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ABSTRACT
We demonstrate the feasibility of undertaking performance evalua-

tions for JVMs using: (1) a hybrid JVM/OS tool, such as async-pro-
filer, (2) OS centric profiling and tracing tools based on Linux

perf, and (3) the Extended Berkeley Packet Filter Tracing (eBPF)

framework where we demonstrate the rationale behind the stan-

dard offwaketime tool, for analysing the causes of blocking laten-

cies, and our own eBPF-based tool bcc-java, that relates changes
in microarchitecture performance counter values to the execution

of individual JVM and application threads at low overhead.

The relative execution time overheads of the performance tools

are illustrated for the DaCapo-bach-9.12 benchmarks with Open-

JDK9 on an Intel Xeon E5-2690, running Ubuntu 16.04. Whereas

sampling based tools can have up to 25% slowdown using 4kHz

frequency, our tool bcc-java has a geometric mean of less than 5%.

Only for the avrora benchmark, bcc-java has a significant over-

head (37%) due to an unusually high number of futex system calls.

Finally, we provide a discussion on the recommended approaches

to solve specific performance use-case scenarios.

CCS CONCEPTS
• General and reference → Performance; • Software and its
engineering → Virtual machines.
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1 INTRODUCTION
We briefly survey standard performance evaluation approaches

and tools, and their limitations for Java Virtual Machines (JVMs)

concerning Garbage Collection (GC) log files, heap analysis, lock

contention, processor core sampling, and bytecode based instru-

mentation for the measurement of application specific performance

metrics (Table 1 summarises tool features and capabilities). Logging

involves turning on JVM flags to monitor specific JVM subsystem

behavior (e.g. JIT compilation or GC). The two main approaches to

profiling are tracing and sampling. Tracing instruments code tomea-

sure microarchitecture or system performance metrics. Sampling
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profilers repeatedly collect the stack trace of called functions/meth-

ods, that describe the code running on the processing core, on-core,
at the sampled moments in time.

The Unix OS perf tool is becoming widely used as it supports

both sampling and tracing. In the Java community, sampling based

profiling is widely implemented with JVM Tools Interface (JVMTI)

agent support using GetCallTrace (e.g. JProfiler). This approach
is reliant on restricting sampling to safe-points, that are inserted by

the JIT compiler to support GC. Such restrictions generate bias, and

can lead to incorrect performance information. DTrace was a key

tool popularizing tracing on Solaris, and then ported to FreeBSD,

NetBSD, Mac OS, and in 2018 to Windows. Since 2016, Linux inte-

grated similar functionality via the eBPF framework (Kernel version

4.9). This paper demonstrate the feasibility of undertaking perfor-

mance evaluations for unmodified JVMs using either, (1), a hybrid

JVM/OS tool, such as async-profiler, (2), OS-centric profiling
and tracing tools based on perf, or (3) our own eBPF-based tracing

tool, bcc-java. The contributions of this paper are:
– We measure the overheads of on-core sampling with profiling for

100Hz (1 sample every 10ms), 1kHz (every 1ms) and 4kHz (every

250µs) for the DaCapo benchmarks. We find that 1kHz sampling

can be used with the async-profiler and perf/perf-map-agent
with a reasonable geomean overhead of less than 5.2% and 11.2%

respectively compared to normal execution.

– We show how flamegraphs produced using perf combined with

perf-map-agent can be used to identify where JIT based compila-

tion has failed to inline successfully.

–We report that heap allocation based profiling using the async-p-
rofiler is low overhead, at less than 2.8%, for all benchmarks, and

that flamegraphs enable developers to easily determine the main

allocation sources in their programs.

– We present a low overhead tracing tool bcc-java (see Section 5)

with a geometric mean overhead of 3.6% for characterizing the per-

formance of all service and application threads created by a JVM.

The bcc-java tool is developed on top of Linux eBPF Compiler Col-
lection (BCC) [12, 23] for adding tracing support to operating system
kernels and applications. Performance counter measurements such

as instructions executed, processor cycles and cache misses can be

directly related to application thread IDs, and to VM services. The

monitoring techniques in the tool have generic applicability that

could be deployed to characterize any multi-threaded application.

– We demonstrate how the BCC offwaketime tracing tool can be

used to produce flamegraph visualizations that describe important

aspects of thread blocking and wakeup execution behavior without

requiring JVM modifications.

– We summarize the main features of the tools async-profiler,
perf, offwaketime, and our new bcc-java tool in Table 1.

Section 2 generally discusses the capabilities of log file analysis

tools targeting GC and JVM related memory performance anal-

ysis. Section 3 presents Flamegraphs [13] and how to interpret
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them for JVMs. Section 4 explains the capabilities of traditional

Java based profiling tools and their limitations. The benefits of

AsyncGetCallTrace based profiling, and the stack fragment sam-
pling approach of [15] are discussed. Section 5 explains the rationale
behind the design of the eBPF/BCC tools and the tracing tool that

we have built. Section 6 presents our experimental methodology and

performance overhead analysis. Section 7 presents guidelines for

the use of performance evaluation tools under different use-cases,

and finally Section 8 discusses our conclusions.

2 RELATEDWORK: GC & JVM ANALYSIS
JVM implementations support the logging of GC statistics by stati-

cally or dynamically turning on JVM flags. The statistics typically

concern object allocations, usage of heap memory spaces, stop-
the-world (STW) pauses, and total execution times for each GC

invocation. STW pauses occur when all application threads are

blocked during GC. Post-processing or runtime analysis of logs can

be performed by tools such as [10, 9, 11, 20]. Lengauer et al. [17]
presents an in-depth analysis of the GC behavior of Java bench-

marks including DaCapo using G1 GC in the HotSpot JVM. Auto-

mated processing of logs can aid identification and solution of GC

related performance problems, such as increasing the maximum

heap size, changing the ratio of younger to older generation heap

sizes, and changing heuristics for moving objects into different

heap spaces. Dynamic dashboard visualizations are typically used

to present information concerning the relative health and efficiency

of applications in production environments.

However, GC log analysis cannot help in identifying or resolv-

ing which application code is the cause of high memory allocation

and/or leaks. The JVM can provide a heap dump snapshot of the

current live objects at relatively high cost. Such dumps may help de-

velopers to determine why GC execution and pause times might be

higher than expected. Unfortunately heap dumps lack information

on the allocation site of an object, nor can a dump help determine

which thread allocated an object. Object deallocations can only be

detected by comparing two subsequent dumps and finding that

an object was removed. This is difficult as objects often change

their heap storage location during GC where objects move between

memory generation regions, and in heap compaction. Object allo-

cation profiling and recording of every object using standard JVMs

are typically based on expensive [24] combinations of bytecode

based instrumentation, and stack traces. Consequently, many tools

only record allocations above minimum sizes, and/or every n-th

allocation in order to reduce overhead.

AntTracks [16] is a customized HotSpot based JVM that instru-

ments object allocation, movement and deallocation with a low

logging overhead of less than 4.68%. The recorded events are suffi-

ciently detailed to enable the heap’s state to be reconstructed offline,

for the beginning and end of every GC cycle by incrementally ap-

plying the effect of events described in trace files. Thread local
allocation buffers (TLABs) are used to store event traces, with data

compression to minimise trace collection and storage overheads.

Cao et al. [6] evaluated the power and performance requirements

of managed runtime workload execution. Their work considered

single-ISA heterogeneous asymmetric multicore processor (AMP)

hardware with processor cores that are optimised for different

power-performance tradeoffs. The main findings of interest are

that GC accounts for 10% of processor execution cycles on average,

and nearly 40% for lusearch from the DaCapo benchmarks.

Sartor et al. [21] presented techniques to analyze the scalability of
managed language applications with speedup stacks. Lightweight

OS kernel modules were used to monitor an application and its

VM service threads scheduling behavior with an overhead of up

to 1.15% but, typically under 1%. They perform experiments on

one node of an Intel Xeon E5-2650L server consisting of 2 sockets,

each with 20MB shared LLC, 8 physical cores, with hyper thread-

ing enabled giving 16 logical cores on each socket, and a 64-bit

3.2.37 Linux kernel. Sufficient logical cores are present to ensure

that the OS does not need to schedule out a thread other than for

synchronization or I/O. A problem with this approach is that it is

not expected to be portable across processor ISA architectures, and

it may require recompilation for each new kernel release. For their

experiments, they used JikesRVM [4] with the DaCapo lusearch,
pmd, sunflow and xalan benchmarks. JikesRVM was modified

to record the JVM application, compilation and garbage collection

thread type process identifiers (PIDs) to enable their kernel modules

to attribute microarchitectural performance counter measurements

to specific JVM thread types. The speedup stack visualization helps

developers to determine if optimization efforts that focus on appli-

cation, or JVM runtime services are likely to improve performance.

Our bcc-java tool development was motivated by [21].

Hofer et al. [14] modified OpenJDK8u45 to observe and trace

events related to lock contention with a mean runtime overhead of

7.8%. The call-stacks of a thread blocking on a lock, and the thread

holding the lock causing the blocking were recorded. They also

presented a tool for users to identify locking bottlenecks in their

code by analysing the traced events. They identified that many

call-stacks that use locks are actually identical, therefore it is only

necessary to maintain a hash set of known call-stacks.

The BCC offwaketime tool performs a similar task to [14], ex-

cept that it uses eBPF’s OS level tracing of kernel events associated

with thread scheduling to determine: (1) the call-stack of a blocked

thread, (2) its blocked time duration, and (3) the call-stack of the

waking thread, which causes the scheduling state of the blocked

thread to change to runnable. The call-stack of the blocking thread

does not change whilst it is off-core and blocked. Hence, its call-

stack need only be recorded when it meets some selection criteria,

such as belonging to a process that we are interested in, and if its

blocking duration is within a specified range. This enables efficient

and selective tracing of call-stack blocking and wakeup behavior

due to thread interactions.

3 FLAMEGRAPH VISUALIZATIONS
Brendan Gregg [13] has shown that scalable vector graphic (SVG)
visualizations of flamegraphs, see Figure 1, can aid identification of

performance critical code from sampled stack traces. Stack traces

can be related to processing core time, or to the change in a quantity,

such as last level cache misses, from a hardware counter. In this

way it is possible to produce flamegraphs that characterize the

microarchitectural behavior of an application’s execution. SVGs

enables flamegraphs to be viewed, zoomed in/out, and searched

for text inside web browsers. The percentage contribution of a



Cropped view of rendered flamegraph. Yellow is C++ code, green is JIT

compiled Java, red is native/library, and orange is kernel code. Constrained

heap size to make GC significant.Inlined methods appear as teal/blue.

Figure 1: Flamegraph: lusearch processing of on-core stack
traces using perf,perf-map-agent with 1000Hz sampling.

method is easily determined by searching for its name, whereupon

each instance of the method in the graph is highlighted and its

overall contribution to the total number of samples is displayed

at the bottom right hand corner. This can be especially important

for determining the relative contribution of methods having many

different call-sites in an application.

In a flamegraph, any stack traces having identical callers are

merged, then any non-identical child callee nodes in the collected

traces appear as a new control flow path. Control flow paths are

visualized by presenting the unique names of methods inside rectan-

gular blocks that are typically organized lexicographically in order

from left to right. Divergence in a control flow path is indicated by

more than one rectangular block being stacked on top of another,

such as for the blocks stacked on top of GangWorker::loop in our

Figure 1. The topmost frame in a flamegraph is the method that

was executing when a call-stack was sampled. The topmost meth-

ods will be identified correctly as long as any sampling skid
1
[7]

does not cause an incorrect method to be attributed. Note how

the use of different colours can be used to distinguish between

inlined Java, kernel, JIT compiled Java, C++, and native/library

code. Interpreted Java methods are only labelled as Interpreter,
and cannot be identified with perf/perf-map-agent. However,
call-stacks and flamegraphs produced with async-profiler can
identify methods that undergo interpreted execution. It is a fairly

trivial matter, using options for async-profiler and perf to gen-

erate flamegraphs where thread PIDs are also captured with call-

stacks, this can sometimes be beneficial, but it can quickly become

confusing if an application contains many threads.

Identifying Inlined Methods. In Figure 1, an inlined method ap-

pears as a teal/blue frame above a green Java JIT compiled method,

further inlined methods appear as stacks of teal/blue frames. Inlin-

ing information accuracy is improved through the use of -XX:+Deb-
ugNonSafePoints. Note that flamegraph columnswhere a teal/blue

rectangle/method is directly below green, indicate a place where the

1
Skid occurs when the reported program counter (PC) value is a number of instructions

away from the actual PC when the thread was interrupted for stack sampling.

JIT compiled and inlined code has called a method that was chosen

not to be inlined. Note that on-core flamegraphs, only demonstrate

stacks for threads that were executing when sampling of call stacks

occurred. They neglect the importance of off-core timewhen threads

are blocked.

Heap/Allocation Flamegraphs. Figure 2 is an heap allocation

flamegraph created using async-profiler, here the width of a

call stack is proportional to the amount of heap memory allocation.

The topmost call-stack element represents the allocated data type,

i.e. an array, such as char [], or an object such as StandardFilter.
The profiler features TLAB-driven sampling that relies on callbacks

(see AllocTracer in the OpenJDK/HotSpot sources) to receive no-

tifications; i), when an object is allocated inside a newly created

TLAB (annotated as INSIDE or aqua in Figure 2), and ii), when an

object is allocated on a slow path outside a TLAB (annotated as

OUTSIDE or in orange in Figure 2), for example when its size exceeds

that of the TLAB. This means not every allocation is counted, but

only allocations every N kB, where N is the average size of TLAB.

This makes heap sampling very cheap and suitable for production,

as in practice it will often reflect the top allocation sources, but the

collected data may be incomplete.

Offwaketime Flamegraphs. The blocking latency associated with

off-cpu time can be analysed with offwaketime flamegraphs. Fig-

ure 3 presents cropped illustrative output of the BCC/eBPF tool

offwaketime for the avrora benchmark for blocking of thread

node-0. The bottom stacks, colored blue, are off-core stacks that

indicate the sequence of method calls leading to a thread blocking,

and these are read from the bottom up leading towards the point

where they blocked, that is separated from the waking thread stack

by a grey block that is labelled --. The waking thread stacks, col-

ored aqua, have their call-stack frames listed in reverse order, and

are read from the top down, from application code, down to the

method that caused the blocked thread’s scheduling state to change.

The tool offwaketime achieves similar information to [14] for de-

termining the blocking and wakeup behavior without requiring a

modified JVM. A current limitation is that one wakeup stack may

not be sufficient to explain all the sources of blocking latency. For

example, when the "waker-thread" was itself blocked on another

thread, potentially leading to a chain of blocking and wakeup stacks.

4 JAVA BASED PROFILING
Sampling profilers repeatedly collect snapshots of the call-stack of

functions/methods, that describe the on-core execution context of a

thread running on a processing core, at the sampled moments in

time. The thread execution time of specific methods is statistically

related to the number of times the method appears in all stack traces

- as long as the samples are collected fairly, and that all points in

a program run are selected randomly to remain statistically inde-

pendent. If many samples are collected over time, and the code

stack-traces are highly correlated, then we can safely assume that

threads in a program are spending most of their time executing

code described by the most heavily correlated call-stack. Unfortu-

nately, profilers that directly rely on the Java Virtual Machine Tool



Tool async-profiler perf bcc-java offwaketime

Native applications No Yes Yes Yes

JIT compiled code support Automatic requires perf-map-agent Not appropriate requires perf-map-agent

JVM Restrictions OpenJDK/HotSpot JDK 8u60 No, but for thread JDK8u60

AsyncGetCallTrace onwards names JDK9 needed onwards

TLAB overflow callbacks

JDK 7u40

Interpreted methods Identified Seen as Interpreter Not appropriate Seen as Interpreter

Identify inlined Java methods No Yes No No

-XX:+DebugNonSafePoints

JDK -XX Flags None Yes None Yes

+PreserveFramePointer No Required No Required

+DebugNonSafePoints No Improves inlining accuracy No No

Methodology Sampled Sampled eBPF tracing eBPF tracing blocked time

call-stack call-stack instrumentation captures call-stacks

PC stack sampling skid Yes Yes No No

Heap profiling/overhead TLAB based, low overhead None None None

Identify hot-methods Some JVM stubs/intrinsics Full-stack, stubs & Thread-based (No) Blocked-time (No)

are invisible intrinsics are visible

Microarchitecture counters Sample call-stacks Sample call-stacks Measures changes Measures off-core time

associated with threads

Flamegraph visualisation Yes Yes No Yes

Relate blocked thread call-stacks No No No Yes - with selective

to wakeup call-stacks filtering on blocking time

Table 1: Summary of features and functionality of profiling and tracing tools used in experiments.

Figure 2: Annotated flamegraph, async-profiler for
lusearch benchmark for heap memory allocations.

Interface (JVMTI) suffer from the problem of safe-point
2
bias [18].

The sampled data is skewed towards the times when threads have

voluntarily yielded the processing core at safe-points where the

JVTMI’s GetStackTrace can directly obtain call-stacks. One might

incorrectly come to the conclusion that the actual hot code should

lie somewhere between the sampled call stack of the "hot" safe-point

and the potential call-stack of the immediately previous safe-point.

Yet, this is not the case because there are significant, variable and

lengthy delays between when an JVMTI agent signals an JVM to

2
The JVM inserts safe-points that define points where the state of an executing thread

is well understood. Effectively this means that all object references stored on the stack

are at known locations, and actual storage locations can change during an GC.

Figure 3: Cropped, annotated offwaketime flamegraph (re-
stricted to thread node-0 blocking) for avrora benchmark.

sample a stack trace and the operation occurring. The JVMTI re-

quest is first added to the VM thread’s work queue, and the VM

thread must process any prior pending tasks first. Figure 1 demon-

strates significant VM_Thread activity (20% of call stacks) related to

GC.

Mytkowicz et. al. demonstrated, in [18] that four different com-

mercial and open-source profilers often produced demonstrably

different results for the percentage overhead of, and the actual

hottest method. The overhead of profiling varied between 1.1x and

1.5x for the different profilers on sequential benchmarks chosen

fromDaCapo, and different profilers caused significant perturbation



Figure 4: Normalized execution time overheads for unprofiled (normal) bcc-java (BCC), async-profiler on-core with (ASY)
and heap allocation with (ALL), perf (PMAP) summarised for lusearch, pmd, sunflow, xalan benchmarks. g.mean refer to all
11 benchmarks studied

to the placement of safe-points in compiled methods. Safe-point

placement is an implementation decision of the JVM, therefore dif-

ferent JVM’s are likely to report hot-methods with different results

and accuracy. Current popular and widely used profilers such as

VisualVM, JProfile and YourKit all provide a sampling processing-

core profiler that suffers from the problem of safe-point bias. Fur-

ther problems concerning sampling profilers, and also for bytecode

based instrumentation using JVMTI, is that any injected bytecode:–

–Introduces overhead to actually perform the stack trace collection.

–Affects the accuracy of analysis and the applied JIT optimizations;

Inlining decisions change if a method becomes too large to inline.

GC and memory behavior in the JVM may be significantly altered

if escape analysis [8] cannot decide if it is safe to allocate specific

objects on the stack, and instead they are allocated on the heap.

–Changes in code size are likely to affect compiled code layout, and

cache performance due to the need to respect machine alignment

for specific data types.

–Will change safe-point placement because of injected bytecode.

A prototype safe-point bias free proof-of-concept profiler was

first demonstrated in [18]. UNIX signals were used to pause Java

application threads prior to sampling the call-stack of the currently

executing method. A JVMTI agent was used to build a map of

x86 code ranges to Java methods that enables code addresses in

call-stacks to be mapped back to Java methods. Note, the profiler

executes completely outside of the JVM, and cannot know the

identity of an interpreted method.

The honest-profiler [3] and async-profiler [2, 19] are re-

cent examples that have extended and improved the proof of con-

cept ideas of [18]. We do not discuss the honest-profiler due to

space limitations. The async-profiler employs a hybrid approach

for its stack trace collection based on i), AsyncGetCallTrace to

obtain information on a thread’s Java frames, without the require-

ment to be at a safe-point, and ii), perf to provide information

on native code and kernel frames. The perf_event API is used to

configure stack samples to be placed into a memory buffer, and a

signal is delivered when a sample has been taken. Its signal handler

then calls AsyncGetCallTrace to capture the Java stack that it then
merges with the perf stack trace of native and kernel information.

The main benefits of this approach over a purely perf/eBPF ap-

proach is that it can be used to profile applications running on older

JVM releases that do not support -XX:+PreserveFramepointer3

that is necessary for OS tool based stack walking of Java thread

stacks. The main pros and cons of async-profiler are:
– AsyncGetCallTrace is an internal Oracle/OpenJDK API that is

not guaranteed to be available in other JVM implementations.

– Optimised compiler inserted stub code that enables efficient im-

plementation of compiler intrinsics, and performance critical JVM

operations such as crc32 and System.arraycopywill generally be
invisible to AsyncGetCallTrace because the JVM does not record

the necessary metadata for many such stubs.

3
Execution overhead of this flag was less than 4% in our experiments.



– Off-core thread stacks that are blocked or sleeping are not col-

lected by AsyncGetCallTrace.
– AsyncGetCallTrace will produce some failed stack traces where

it is unable to safelywalk a stackwithout causing an invalidmemory

access. There were very few failed stack traces in our experiments.

perf also suffers from this unavoidable problem.

– Does not require generating a map file to map Java code addresses

to method names, if one uses perf_event directly then one tradi-

tionally uses perf-map-agent for this purpose.
– Identifies the methods in interpreter frames, perf-map-agent
merely identifies that an interpreter frame is present.

– Allocation profiling can be performed to identify the sites where

the largest amount of heap memory is allocated. In our experiments

the overhead of allocation profiling is always below 2.8%. Allocation

profiling does not impact on escape analysis or JIT optimizations.

The async-profiler tool can collect stack traces from Java

methods, native calls, JVM code and kernel functions (only pos-

sible in processing core profiling mode). Both async-profiler
and perf approaches support reading performance counters sup-

ported by perf_events such as:- last-level cache/data TLB load

misses, L1-dcache misses, branch misses, page faults, and instruc-

tions retired. The perf approach collects callstacks and has access

to perf_events, and uses the perf-map-agent JVMTI agent to

generate a mapping of code addresses to Java symbol names. The

main benefits of the perf-based approach over async-profiler
are that: (1) the JVM flag -XX:+DebugNonSafepoints enables inlin-
ing decisions to be accurately visualized in a flamegraph, and that (2)

JVM generated stubs, and performance critical operations (e.g. JVM

intrinsics), can be observed that are invisible to async-profiler.
No commercial features are required by async-profiler, as it

is completely based on open-source technologies and works with

OpenJDK from version 7u40 onwards, where the TLAB callbacks ap-

peared. Note, the heap allocation functionality of async-profiler
requires libjvm.so JVM debug symbols.

Stack Fragment Sampling (SFS). SFS, as described in [15], has less

overhead than AsyncGetCallTrace and JVMTI basedmethods, this

is achieved using a modified HotSpot JVM. SFS typically occurs

only when a thread is active and on-core. A thread is paused to

copy a fragment of its full stack to a buffer. Copied fragments are

asynchronously retrieved from the buffer and decoded to full stack

traces. Redundant samples are not captured giving reduced storage

overheads.

Their work is of low overhead, but they encounter significant

problems when enabling the collection of information on waiting

periods, i.e. when a thread is blocked for I/O or to acquire a lock.

The number of lost samples increases from a maximum of 2% for

pmd, to more than 50% for the benchmarks actors, avrora, and
scalatest in their experiments. Further, SFS operational overheads

are likely to be lower on their quad-core experimental setup in

comparison to our 8 core node. The performance slowdown of their

techniques was approximately 1.15x (i.e. 15% slower) for avrora
when waiting time was not sampled for a 10kHz sampling rate.

They found i) that their heuristic rules to enable stack walking

work for more than 90% of sampled stacks, even when execution

is in native or VM code, and ii), that a fragment size of 32KB can

obtain complete stack traces.

5 THE BCC-JAVA TOOL
The Berkeley Packet Filter (BPF) [22] enabled instrumentation code

to be attached to a network socket by injecting bytecode (describing

an BPF program) from userspace to the kernel. JIT compilation and

verification checks are performed to ensure no security or kernel

crashes can occur. The development of extended BPF (eBPF) has (i)
improved JIT compilation, (ii) added many more probes to Linux,

and (iii) enabled user-level statically defined trace probe points for

application programs. Probes are points where dynamic instrumen-

tation can be attached. Each probe has a specific set of variables that

are used to describe the probe’s events. The instrumented code can

perform different processing based on the values of the variables

of a probe.

We use the BCC toolkit that provides a set of Python scripting ex-

amples demonstrating how to; i), launch BCC tools, ii), exploit eBPF

features for instrumentation, and iii), how to efficiently perform

I/O to obtain profiling/tracing results.

The main capabilities of BCC, and eBPF are summarized in [12].

Instrumented code can read hardware performance counters, and

update arbitrary data structures to collect and process information.

A Maps data abstraction enables information to be processed and

aggregated in kernel, before sharing with user-space when required.

We have developed a low-overhead tracing tool that records mi-

croarchitectural and execution time characteristics associated with

the multi-threaded execution of Java programs. The tool currently

records a thread’s name, its start/exit time, cycles, instructions, and

time spent on-core in execution. We additionally record the number

of scheduling quanta given to each thread, the off-core waiting time,

and the total number of sys_futex system calls. The initial JVM

process is created by executing the JDK java command; hereafter

referred to as the java-process. Our tool uses instrumentation of:

– java-process creation and termination by instrumenting kernel

methods for sched_process_exec, sched_process_fork and sc-
hed_process_exit. The PID of the initial java-process that is cre-
ated is stored in a hashmap.

– The creation of new threads that are children of the initial PID are

tracked using a kernel probe attached to the sys_clone method.

– Kernel probes are attached to the entry and exit of the sys_futex
system call. We record for each thread, the number of futex calls,

the total elapsed time whilst blocked, and performance counter

values when a thread is blocked/unblocked.

– Thread scheduling, namely sched_switch is instrumented to col-

lect time and performance counter information concerning the

allocation of a thread to a processing core. The counter values and

elapsed time are updated at the end of a thread’s quantum, or when

the thread enters the sys_futex system call.

– On termination of the java-process, the tool stores per-thread de-

tails of accumulated performance counter values, total wait time,

total calls to sys_futex, and elapsed time. OpenJDK9 uses a default

thread naming scheme that allows to distinguish between different

types of threads, i.e. application and service threads related to JIT

compilation, GC, and other JVM services. Thus, measurements are

linked to specific JVM subsystems.



6 EXPERIMENTS – TOOLS OVERHEADS
The experimental objective is to quantify the execution time over-

heads of perf, async-profiler and bcc-java tools using the es-
tablished set of DaCapo [5] JVM performance evaluation bench-

marks. The overheads of running the different performance tools

are normalized against the execution times of ELEVEN unmodified

(avrora, fop, h2, jython, luindex, lusearch, pmd, sunflow, tradebeans,

tradesoap, xalan) DaCapo-bach-9.12 benchmarks that execute suc-

cessfully under OpenJDK9 with G1 GC using default application

problem and heap sizes.

The experimental machine is a two-socket Intel Xeon E5-2690,

with 8 physical cores per socket (hyper-threading is disabled), 20MB

LLC cache, and a total of 384GB DRAM main memory, with Linux

kernel 4.13.0-36-generic. All cores are set to 2.9GHz frequency via

a user-space governor. No other users are present on the system, a

single ssh connection is used to initiate and monitor experiments

that only access local disks. NUMA memory effects are avoided

by executing applications only on cores belonging to one socket,

as in [21]. We used bcc-tools version 0.5.0-1, and OpenJDK (build

9-internal+0-2016-04-14-19524-6.buildd.src, mixed mode).

Each benchmark is executed for 20 iterations and the 19th itera-

tion’s time is recorded. This is repeated 30 times in order to avoid

variability due to JIT recompilation and startup costs. The 19th itera-

tion execution time measurements are normalized to the average of

each benchmark under normal execution without profiling over its

30 runs. Figure 4 depicts the median execution times, in the form of

box plots, normalized to average execution time without sampling.

On each box, the central mark denotes the median, and the bottom

and top edges indicate the 25th and 75th percentiles, respectively.

The box spans the interquartile range of the sampled data. The

whiskers extend to the most extreme data points not considered

outliers, which are not shown. However, the whiskers extend to up

to 1.5x of the interquartile range below and above the bottom and

top edges, respectively. This corresponds to approximately ±2.7σ or

99.3% coverage if the data were normally distributed. The g.mean
labels in Figure 4 show the geometric means over all ELEVEN

benchmarks; e.g., g.mean-ASY-100Hz is the geometric mean over

all benchmarks of async-profiler on-core profiling with 100Hz

sampling. These are accompanied by error bars that delimit 95%

confidence intervals.

The experimental configurations are: (1) baseline (no profiling

tools used), (2) async-profilerwithALL allocation andASY pro-

cessing core profiling, (3) perf with perf-map-agent (notated as

PMAP), and (4) bcc-java based tracing (notated as BCC) where
we measure the instructions and cycles executed along with accu-

mulated counts of execution/waiting time and the start and end

times of individual threads. For on-core async-profiler and perf
we used 100Hz, 1kHz and 4kHz sampling frequencies. Note, 10kHz

perf sampling was not feasible as kernel warning messages ap-

peared concerning interrupts and frequency throttling.

For clarity, Figure 4 only plots sampling frequencies of 100Hz

and 1KHz for a small set of individual benchmarks (lusearch, pmd,

sunflow and xalan), whilst geomean plots refer to execution of

all ELEVEN benchmarks with 100Hz and 4KHz sampling, in this

way we can see the relatively higher overheads of async-profiler

(1.26x ASY-4kHz) in comparison to perf (1.16x PMAP-4kHz) at

higher sampling rates (perf overhead is substantially less than

async-profiler for 4kHz sample rates for all benchmarks other

than avrora). This is despite the unusually high overhead of perf

on avrora that is more than 2x even at a low 100Hz. However on a

laptop class machine with an i7-7500U processor having 2 physical

processing cores (4-hyperthreaded) @2.7GHz, the overhead of the

same experiment was 3.8%. We cannot definitively explain why

there is a significant overhead even for 100Hz sampling, but we

suspect that processor chipset issues, and kernel version issues such

as default perf buffer sizes may be relevant.

Our bcc-java tool has very low-overhead apart from avrora
where its average overhead is 1.37x. bcc-java text output enabled

us to determine that the Java application threads were spending

circa 80% of their total execution time blocked off-core, largely

because of repeated calls to sys_futexwhen attempting to acquire

locks. bcc-java has relatively high overhead on avrora because
instrumentation measuring time, cycles and instructions executed,

along with the code to update the in-kernel eBPF maps, occurs

with relatively high frequency, that we calculated from bcc-java
tracing to occur on average every 9863 cycles and 12658 instruc-

tions executed, by examining bcc-java tracing information for one

iteration of one application thread on avrora.

7 PERFORMANCE USE-CASE GUIDELINES
The next paragraphs present use-cases and the suggested guidelines

for how to identify them.

A) Identifying the call-stack context, load-imbalance, and functions
where significant execution time is spent. Browser views of on-core
flamegraphs produced via perf, or using async-profiler are ap-
propriate. The method with the most significant execution time

equates to finding the top-most widest call-stack tower. Note that

some functions may appear in many different call-stacks, because

they are called from many different call-sites, and this may cumula-

tively add up to be a significant proportion of the total number of

stack-samples, and hence execution time. Searching for a function

name in the browser view of an SVG will determine the total %

appearances of the function in all call-stack samples. perf can see

many JVM intrinsics, compiler stubs and inlining decisions that

are mostly invisible to async-profiler. Load-imbalance can be

identified by using flamegraphs that propagate thread PIDs to the

call-stack. Unequal width call-stacks concerning different thread

PIDs will signify unequal on-core load-imbalance across threads.

Load-imbalance can also measured by examining thread start/stop

and blocked execution times that is traced by the bcc-java tool.
B) Identifying if GC time, and memory allocation issues are signifi-

cant Core-profiled flamegraphs can be used to identify if GC related

methods are significant, whereas allocation based flamegraphs with

async-profiler can determine the source code methods where

significant memory allocation occurs, and whether allocations were

from inside or outside of a TLAB. Manually restructuring the code

to reduce the volume of memory allocated, and applying standard

GC log file analysis tools to change and optimize specific GC algo-

rithm parameters are recommended.

C) Identifying JIT compilation method inlining decisions that
may be critical for performance.We recommend, using perf, with
-XX:+DebugNonSafePoints enabled. Flamegraph columns where



a teal/blue rectangle is placed directly below a green rectangle indi-

cates a call site where JIT compiled and inlined code has called a

method that was chosen not to be inlined. JIT compilation logging

can be selectively enabled for the affected methods. A tool such

as JITWatch [1] may help to determine the reasons why inlining

failed. Careful refactoring of large methods into multiple smaller

ones may enable inlining decisions that were previously precluded.

D) Identifying the causes of blocked thread execution states, for
example, lock-contention, I/O, and a lack of processing resources.

The bcc-java tool can be used to identify on a per-thread basis if

a thread spends a significant amount of time blocked, and, also if it

relates to sys_futex lock acquisition/release. The eBPF/BCC tool

offwaketime can be used to identify the specific call-stacks that

contribute to long blocking times, and also the call stacks that cause

the blocked threads to be woken up in the kernel. This achieves

similar functionality to [14] but without any JVM modifications.

Note, the offwaketime tool uses tracing so the actual blocked exe-

cution time is measured. Command line arguments can be used to

filter out very short and extremely long thread blocking times such

as when a server is lightly loaded or inactive.

8 CONCLUSIONS
This paper examines the peformance analysis capabilities of async-
profiler, perf/perf-map-agent and the potential of eBPF-based
tools such as our bcc-java, and offwaketime. Flamegraph visual-

izations of memory allocation (GC) and processing core profiling

can easily show which Java methods and native or OS code are

significant, and that even JIT compilation inlining decisions can

be captured. Sampling at 1kHz (1000 samples per second) offers

reasonable overhead and 100Hz sampling rates are suitable for pro-

duction use, except for avrora with perf. Although not presented

in the paper, the async-profiler and the perf/perf-map-agent
approaches can both be used to attribute microarchitecture perfor-

mance counter events to flamegraphs. However, PC sampling skid

(affecting both async-profiler and the perf/perf-map-agent)
will vary depending on the specific performance counter event and

processor implementation. We have found that sampling-based pro-

filer flamegraph visualizations provide a useful tool to investigate

and to characterize Java application and GC performance. In con-

trast, our tool bcc-java does not suffer from the PC-sampling skid

problem as it is a tracing based tool. The overhead of bcc-java is

small (geomean 3.6%) despite capturing microarchitectural perfor-

mance counters on thread scheduling activities.
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