
Type Information Elimination from Objects on
Architectures with Tagged Pointers Support

Andrey Rodchenko , Christos Kotselidis, Andy Nisbet, Antoniu Pop, and Mikel Luj�an

Abstract—Implementations of object-oriented programming languages associate type information with each object to perform various

runtime tasks such as dynamic dispatch, type introspection, and reflection. A common means of storing such relation is by inserting a

pointer to the associated type information into every object. Such an approach, however, introduces memory and performance

overheads when compared with non-object-oriented languages. Recent 64-bit computer architectures have added support for tagged

pointers by ignoring a number of bits - tag - of memory addresses during memory access operations and utilize them for other

purposes; mainly security. This paper presents the first investigation into how this hardware support can be exploited by a Java Virtual

Machine to remove type information from objects. Moreover, we propose novel hardware extensions to the address generation and

load-store units to achieve low-overhead type information retrieval and tagged object pointers compression-decompression. The

evaluation has been conducted after integrating the Maxine VM and the ZSim microarchitectural simulator. The results, across all the

DaCapo benchmark suite, pseudo-SPECjbb2005, SLAMBench and GraphChi-PR executed to completion, show up to 26 and 10

percent geometric mean heap space savings, up to 50 and 12 percent geometric mean dynamic DRAM energy reduction, and up to

49 and 3 percent geometric mean execution time reduction with no significant performance regressions.

Index Terms—Runtime environments, high-level language architectures, simulation

Ç

1 INTRODUCTION

MANAGED runtime environments are extensively used
in many computing domains ranging from mobile

devices to cloud servers. Managed object-oriented lan-
guages have been employed not only in application and
middleware domains but also in system programming for
the development of research prototypes such as the Maxine
Virtual Machine (VM) [1], [2], Jikes RVM [3], and the Singu-
larity OS [4].

Implementations of managed object-oriented languages
associate object type information with each object by insert-
ing a pointer to type information into every object as part
of its object header. However such an approach, prevalent
for most object-oriented languages, increases memory
utilization (and can introduce performance overheads)
when compared with non-object-oriented languages.

At the same time, modern 64-bit computer architectures
have added support for tagged pointers. In such architectures,
a number of bits - tag - of memory addresses are ignored
during memory access operations and utilized for other
purposes; mainly security. Furthermore, they provide less
than 64-bit addressable memory space, leaving a number of
bits in object pointers for useful purposes.

In this paper, we present the first investigation into how
tagged pointers in 64-bit architectures can be exploited by
an object-oriented language implementation to remove
a pointer to type information from objects. In addition, we
propose novel hardware extensions to the address genera-
tion and load-store units to achieve low-overhead type infor-
mation retrieval and tagged object pointers compression-
decompression, respectively. In other words, we explore
a Hardware (HW)/Software (SW) co-designed technique in
the context of the Java programming language, although the
proposed technique is applicable to other managed and
unmanaged object-oriented languages.

The key contributions of this paper are:

� A technique of type information elimination from object
headers on architectures with tagged pointers sup-
port. We propose both a SW-only along with a HW/
SW co-designed solution that yields the best results.

� Novel backward-compatible HW extensions (1) to the
Address Generation Unit (AGU) to efficiently retrieve
type information for objects with type information
elimination enabled (optimized) and for objects
without (un-optimized), and (2) to the Load-Store
Unit (LSU) to efficiently handle compression and
decompression of tagged object pointers.

� Demonstration of a novel experimental platform for HW/
SW co-design space exploration on the basis of the
state-of-the-art Maxine VM, the ZSim [5] microarchi-
tectural simulator, and the McPAT [6] power, area,
and timing modeling framework. Parts of this exper-
imental platform laid the foundation for the Max-
Sim [7] platform with more general and advanced
features.

� The authors are with the School of Computer Science, University ofManches-
ter, Manchester M13 9PL, United Kingdom. E-mail: {andrey.rodchenko,
christos.kotselidis, andy.nisbet, antoniu.pop,mikel.lujan}@manchester.ac.uk.

Manuscript received 9 Jan. 2017; revised 15 May 2017; accepted 23 May 2017.
Date of publication 28 June 2017; date of current version 19 Dec. 2017.
(Corresponding author: Andrey Rodchenko.)
Recommended for acceptance by O. Plata.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2017.2709739

130 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 1, JANUARY 2018

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

https://orcid.org/0000-0001-8694-5678
https://orcid.org/0000-0001-8694-5678
https://orcid.org/0000-0001-8694-5678
https://orcid.org/0000-0001-8694-5678
https://orcid.org/0000-0001-8694-5678
mailto:
mailto:

� The evaluation of the proposed technique in the context of
the introduced platform against the DaCapo-9.12-
bach [8] benchmark suite, pseudo-SPECjbb2005 [9],
SLAMBench [10] and GraphChi-PR [11] on several
HW models achieving up to 26 and 10 percent geo-
metric mean heap space savings, up to 50 and 12 per-
cent geometric mean Dynamic Random-Access Memory
(DRAM) dynamic energy reduction, and up to 49 and
3 percent geometric mean execution time reduction
with no significant regressions in these characteristics.

The paper is organized as follows: Section 2 presents a sur-
vey of how type information is associated with objects in
modern Java Virtual Machine (JVM) implementations, as well
as how tagged pointer support works in modern architec-
tures. Section 3 details the proposed technique along with the
accompanying changes to the JVM implementation. Section 4
describes the proposed architectural support for retrieval of
type information with extensions to the AGU and for tagged
pointers load-decompression and store-compression with
extensions to the LSU. Sections 5 and 6 describe the experi-
mental framework and methodology used in this work along
with the obtained results, respectively. Finally, Section 7 dis-
cusses previous work on type information elimination, while
Section 8 summarizes ourwork.

2 BACKGROUND

Next,we explain how type information is typically associated
with objects in a number of modern industrial-strength and
research JVMs. Althoughwe focus on type information elimi-
nation from object headers in the context of the JVM imple-
mentation and the Java language, it is important to mention
that the proposed ideas are applicable to C++ and other non-
managed and managed object-oriented languages with run-
time type information associated with objects. Hereafter, we
will use the terms Class Information (CI), Class Information
Pointer (CIP), and Class Identifier (CID), whose descriptions
are presented in Table 1. Furthermore, we provide an over-
view of the latest computer architectures that support tagged
pointers and succinctly how they implement this support.

2.1 Association of Objects with Class Information
in JVMs

Fig. 1 presents the relationship between an object, its pointer,
and its associated CI. When a new object is allocated on the

heap, its pointer is stored on the stack. When an object
tests if it is an instance of some class, type introspection
happens via data stored in the associated CI, which is
referenced by the CIP stored in the object. Aside from the
CIP and the fields of the object’s class, an object reserves
some extra space for special miscellaneous data (MISC) that
can be associated with it during its lifetime.

The small survey below concerns only 64-bit JVMs since,
to the best of our knowledge, there are no modern 32-bit
systems that support tagged pointers. The layouts of object
headers, to be discussed below, are presented in Fig. 2.

HotSpot. On 64-bit systems, the first eight bytes of an
object are dedicated to the “mark word”. This word is
multi-purpose and is currently used for hashing, locking,
and Garbage Collection (GC) information. The second eight
bytes of an object contain the “klass pointer” (essentially a
CIP), which can be reduced to four bytes when the flag
-XX:+UseCompressedClassPointers is used (enabled
by default in OpenJDK 8 [12]).

Zing. Azul’s Zing uses only eight bytes as an object
header, four ofwhich are dedicated to a compressed CIP [13].

Maxine. The meta-circular research Maxine VM, written
mostly in Java, uses two words as an object header in the
default object layout scheme. The first eight bytes contain
the reference to the “hub” (essentially a CIP) or a forward-
ing pointer during copying GC. The second eight bytes are
dedicated to the MISC word responsible for object locking
and hashing.

Jikes. The meta-circular 64-bit Jikes RVM (which is also
written mostly in Java), like Maxine, has a two-word object
header layout. The main difference is that a forwarding
pointer is stored in the second word.

Fields of objects in the described VMs are located at posi-
tive offsets after their headers (by default). Although it is
possible to lay out an object in memory in fragments [14], in
all other sections, without loss of generality, we assume that
objects are allocated in contiguous blocks of memory.

2.2 Architectural Support for Tagged Pointers

The shift from 32-bit computing to 64-bit has started from
server and desktop deployments and continued to embed-
ded computing after the introduction of the ARM 64-bit pro-
cessor family. Current 64-bit architectures, normally, provide
less than 64-bit addressable memory space leaving a number
of bits of an address unused. Dealing with these unused bits
is architecture-dependent, and the following paragraphs
describe how several modern architectures handle them.

AArch64. ARM’s latest 64-bit AArch64 architecture pro-
vides support for tagged pointers. Virtual address tagging
in AArch64 is enabled by setting the Top Byte Ignore

field in the TCR_ELn control register. In this case, the high
eight bits are ignored during addressing and can be utilized
by the developers in an unmandated way. However, hints
for exploitation in object-oriented languages are given in
the associated programmer’s guide [15]. The most recent
ARMv8.3-A version of the architecture [16] features pointer
authentication to prevent unauthorized memory accesses
and associated exploits [17].

Sparc M7. Oracle’s Sparc M7 architecture also provides
tagged pointers support. Sparc M7 supports virtual address
masking, allowing the use of 8, 16, 24 or 32-bit metadata.

TABLE 1
Glossary of Terminology

Acronym Full name Description

CI Class
Information

The entity that entails the type information of
an object. CI normally contains some meta-
data for dynamic dispatch (virtual method
table), classification (pointer to supertype),
object layout description (size, fields informa-
tion), and other implementation-dependent
metadata.

CIP Class A raw pointer to (address of) the CI.
Information Typically stored in extra words
Pointer preserved for each object before its content.

CID Class A compact non-negative integer
Identifier identifier of a CI.

RODCHENKO ET AL.: TYPE INFORMATION ELIMINATION FROM OBJECTS ON ARCHITECTURES WITH TAGGED POINTERS SUPPORT 131

This metadata is, consequently, ignored by the underlying
HW during addressing [18], [19].

x86-64. In current Intel’s and AMD’s x86-64 architectures
virtual addressing is limited to 48 bits, while the high 16 bits
of the virtual address are required to replicate bit 47. Conse-
quently, tagged addressing is not supported on such architec-
tures [20] (Section 3.3.7.1). However, the property that 16 bits
are not effectively used can be utilized during simulation,
which is described in Section 5. In future generations of pro-
cessors, virtual addressingwill be limited to 57 bits [21].

From the architectural and JVM descriptions, we notice
that themajority of production JVMs use CIP compression in
order to minimize the memory footprint of objects. At the
same time, modern off-the-shelf CPUs offer tagged pointer
support making them ideal candidates for storing CIDs in
tags, thus eliminating CIPs from frequently allocated objects.

3 CLASS INFORMATION HANDLING VIA TAGGED

POINTERS

This section describes how tagged pointers can be utilized
to associate object pointers with CIs, what additional data
structures are required in a VM, and how objects with elimi-
nated CIPs can be handled by a VM.

3.1 Considerations on CIP Placement Inside an
Object and Reuse of CIP Location

The main benefit of CIP elimination from objects is memory
space saving, so any reuse of the CIP location should be dis-
abled to take advantage of CIP elimination. Among the
VMs described in Section 2, only the Maxine VM reuses it,
as a forwarding pointer is stored in the CIP location of an
object during GC. The way to disable the reuse of the CIP
location in the Maxine VMwill be described in Section 5.2.

The other important factor for benefiting from CIP elimi-
nation is CIP placement inside the object and the memory
management mechanism used in the VM. If free memory
chunks are managed in the way of linked lists of fixed-size
blocks and utilization of memory blocks of the size of CIP is
high, then the technique can be oblivious to CIP placement.

However, if objects are allocated in thread-local allocation
buffers by returning and post-incrementing a pointer to free
memory space by the size of a recently allocated object,1

then a CIP should be placed on the boundary of the allo-
cated block of memory for an object. Among the VMs
described in Section 2, only the HotSpot VM does not meet
this requirement. However, as the implementations of other
VMs show, there are no fundamental restrictions on the CIP
placement, and it can be placed at the beginning of the allo-
cated block of memory for an object. In all other sections,
without loss of generality, we assume that CIP is located at
the beginning of the allocated block of memory for an object.

3.2 Encoding CIDs in Tagged Pointers

The number of CIDs that can be encoded in a tagged pointer
depends on the number of bits dedicated for that purpose.
The proposed technique can utilize a variable number of tag
bits from 0 to n. If all tag bits are used for security or
addressing purposes and no bits are left for encoding CIDs,
a VM, implementing the proposed technique, does not have
to be re-implemented. In other words, the proposed tech-
nique can be added to existing VMs without breaking back-
ward compatibility.

For n bits dedicated for storing CIDs in a tag, the range of
CIDs is ½0; 2n � 1� where UNSPECIFIED_CID ¼ 0 represents
any CI. When an object is allocated, the pointer is tagged by
its respective CID. If the CID is not equal to UNSPECIFIED_

CID, its CIP is not stored alongside the object (i.e., in the
heap). Instead, the CID is directly encoded in the object
pointer. The CI for specified CIDs can be stored directly in an
array with a fixed element size, or alternatively, CIPs can be
stored in the array. We use the second option because CIs
have variable sizes while the cost of performing arraymodifi-
cationswith CIPs is lower than in the first option.

The scheme of encoding CIDs in tagged pointers and
enabling CIP elimination is depicted in Fig. 3. There are two
tagged object pointers in Fig. 3: Pi and Piþ1 pointing to
Objecti and Objectiþ1, respectively. Pointer Pi has UNSPE-

CIFIED_CID (0x0) in the tag indicating that CIPnþ1 is
stored in the object, while pointer Piþ1 has CIDn in the tag
indicating that CIPn is stored in CIPArray, and so it is
eliminated from Objectiþ1. In this case, Piþ1 points to the
memory location where the beginning of the object would

Fig. 1. Object and class information association in VMs.

Fig. 2. Layout of object headers in various 64-bit JVMs.

Fig. 3. Scheme of encoding CIDs in tagged pointers and CIP elimination.

1. This technique is also known as a bump pointer allocation, and it
is widely used in JVM implementations.

132 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 1, JANUARY 2018

have been if CIPn was not eliminated. Thus, the offsets to
the same fields in objects of the same class (or superclass)
with and without eliminated CIPs will stay the same.

3.3 CIPs Retrieval from Tagged Pointers

From the above description, the retrieval of a CIP from a
given tagged object pointer (objectAddress) can be per-
formed via the method retrieveCIP shown in Listing 1.
Depending on the available bit extraction instructions of a
given architecture and whether the available bits are contig-
uous, the method extractCID can result in a different
number of instructions. For the rest of the paper, we assume
that CID bits are contiguous high-order bits of the tag, and
tag bits are contiguous high-order bits of the tagged pointer.
Thus, we can use only one instruction for extractCID; a
shift operation.

A check of whether the extracted CID is unspecified is
performed. If cid is unspecified, CIP is loaded by an object
address at a constant offset CIP_OFFSET in one instruction.
Else, if cid is specified, the CIP is loaded from CIPArray

with one instruction. In our experiments we used
CIP_OFFSET ¼ 0. On architectures without predication,
two jumps (conditional and unconditional) will be emitted.

The code in Listing 1 is compiled to seven static instruc-
tions of 25 bytes size with an average dynamic execution
height of 5.5 instructions on x86-64. By contrast, the JVMs
described in Section 2 utilize just one instruction (load by
objectAddress at offset CIP_OFFSET) of three bytes size
on x86-64 to retrieve a CIP. Regarding storing a CIP in an
object, the similar code snippet is used with the exception of
omitting the store to CIPArray if cid is not unspecified.

Listing 1. CIP retrieval algorithm from tagged pointers.

// Array of Class Information Pointers
CIP_t CIPArray[1 < < CID_BITS_NUM];
// Retrieving CIP
CIP_t retrieveCIP(Address_t objectAddress) {
CID_t cid = extractCID(objectAddress);
CIP_t res;
if (cid == UNSPECIFIED_CID) {
res = � ((CIP_t �) (objectAddress + CIP_OFFSET));

} else {
res = CIPArray[cid];

}
return res;

}

3.4 Heap Traversal During Copying GC

When CIPs are eliminated from objects, certain changes to
the copying GC schemes have to be applied. The problem is
that traversal of copied objects in the copying GC schemes
is performed via pointer arithmetic (untagged pointers),
and CIPs in the objects are used to find the references inside
the copied objects and their sizes. Thus, when CIPs are elim-
inated, the association of copied objects with their CIs
should be maintained via an additional data structure. It is
important to note that our proposed changes to the copying
GC schemes do not require additional memory allocation.

The necessary changes are introduced in the context
of the serial stop-the-world semi-space copying GC which

employs Cheney’s algorithm [22]. Modern generational GC
algorithms employ a copying scheme based on Cheney’s
breadth-first copying GC scheme for frequent young genera-
tion collections, and the proposed changes can be applied to
awider spectrum of copying collectors (including parallel).

3.4.1 Cheney’s Scheme Overview and Its Reliance

on CI

Overview. In Cheney’s scheme, objects are allocated in the
“from-space”, and upon a GC invocation, live objects are
copied to the “to-space”. Upon completion, the two spaces
are swapped, and allocation continues in the “from-space”.
During a GC invocation, all threads stop at a safepoint where
an initial set of live heap references can be retrieved. The ini-
tial set of live objects (typically includes objects whose refer-
ences reside on the stack, in thread-local variables, etc.) is
known as root set. When objects from the root set are copied
to the “to-space”, the GC threads start traversing the objects
in the “to-space” in order to copy all the objects referenced
by them. This iterative process is repeated until all live
objects are copied from the “from-space”. Essentially it is a
breadth-first traversal of all live objects.

Reliance on CI. As the GC thread starts scanning the cop-
ied objects of the “to-space”, it usually uses the CIs in order
to find both the reference maps of the processed objects as
well as their sizes in order to continue its traversal on subse-
quent objects. In the proposed CIP elimination scheme, the
GC thread which traverses the “to-space” objects does not
have CIPs in order to extract CIs during execution. Hence, a
mechanism to maintain the mapping between copied
objects and their CIs is required.

3.4.2 Proposed Changes

Overview.We propose a scheme in which CIDs of the copied
objects are stored in the “dead space” created upon the
evacuation of live objects from the “from-space”. The cells
of memory in the “from-space” which contained copied live
objects will be referred to as containers. The outline of the
proposed scheme is depicted in Fig. 4.2

Copying Objects from the “from-Space”. When objects are
copied from the “from-space” to the “to-space”, a tagged for-
warding pointer is installed in the MISC words of the evacu-
ated objects in the “from-space”. The role of the forwarding
pointer during GC is to indicate whether the object has been
evacuated andwhere its new location is. Containers are used
to store CIDs of evacuated objects until they are full (e.g.,
½CID0;CIDn� in Container0), forming a singly linked list (e.g.,
Container0½CID0;CIDn� ! Container1½CIDnþ1; :::�! :::). Fur-
thermore, the space from an evacuated object should meet a
minimum necessary container size requirement to be used in the
list: the space should be enough to accommodate a tagged
forwarding pointer, an untagged pointer to the next con-
tainer, and at least one CID.

Traversing Objects in the “to-Space”. When GC roots are
copied from the “from-space” to the “to-space”, the GC
thread starts traversing linearly the objects that have just
been copied there. As described before, the pointers to these

2. Scales of “from-space” and “to-space” are different, so the sizes of
Container0 and Object0 are equal.

RODCHENKO ET AL.: TYPE INFORMATION ELIMINATION FROM OBJECTS ON ARCHITECTURES WITH TAGGED POINTERS SUPPORT 133

objects are calculated via pointer arithmetic during traversal
and, therefore, the GC thread has to retrieve their CIs by
reading the CIDs from the list of CIDs in the “from-space”.
In order to achieve that, the GC thread maintains a CID list
iterator, which consists of an address to the current con-
tainer and an offset inside it. When a GC thread traverses
an object in the “to-space”, it reads its CID using this itera-
tor. By iterating the objects of the “to-space” and the list of
CIDs synchronously we can associate currently traversed
objects and their CIDs.

Traversing the List of CIDs in the “from-Space”. The contain-
ers are traversed with untagged pointers. Initially, when the
first container (Container0) is traversed, the offset of the
iterator is reset to the size of the container minus the size of
the CID. The size of the container can be found by using the
CID extracted from Tag0. After the initial offset is set to the
offset of CID0, the iterator will start traversing the CIDs
backward by decrementing the offset every time by CID
size. When the CID list iterator points to CIDn�1, which is a
constant offset from the beginning of a container, we know
that we reached the point where there is only one CIDn

left in the container. Therefore, when Objectn is traversed,
the iterator offset will be set to the offset of CIDn. Since the
next container pointer Next pointer0 is untagged, we
have space to save CIDn. When Objectnþ1 is traversed, we
move to Container1, the iterator offset is set to the offset of
CIDnþ1, and the process is repeated for that container.

Special Cases. Regarding the first container, when GC is
triggered, we use the free space from the “from-space”, if it
is equal to or greater than the minimum necessary container
size. In order to guarantee that there will be enough space
to store the list of CIDs, we account for the space needed
conservatively for GC during allocation. Small objects, not
meeting the minimum necessary container size require-
ment, are counted during allocation, and their total number
multiplied by the CID size is subtracted from the maximum
heap space occupied before triggering a GC. Such small
objects are quite rare in practice and do not reduce signifi-
cantly the effective heap usage. For instance, in 64-bit VMs
in which objects are 8-byte aligned and the size of the MISC
word is 8 bytes (all the VMs described in Section 2 with the

exception of Zing), only objects that contain just one MISC
word do not meet the minimum necessary container size
requirement (e.g., objects of class java.lang.Object).

To summarize, the benefits of the proposed scheme are:
(1) re-use of existing “dead space” requiring no off-heap
memory allocation to save CIDs, (2) exploitation of temporal
locality of cache lines related to dead objects, (3) low-
overhead traversal, by employing a light-weight heuristic
during object evacuation which utilizes only large evacu-
ated objects for containers.

4 ARCHITECTURAL SUPPORT

4.1 CIP Retrieval

In Section 3 we have described the CIP retrieval from tagged
pointers (Listing 1). As shown in Section 6, the SW-only
scheme of CIP retrieval from tagged pointers can lead to
degradation of the execution time due to the extra latency
introduced and code footprint increase. To avoid perfor-
mance regressions, we propose novel architectural support
to accelerate CIP retrieval, as well as to minimize the modi-
fications needed to adopt the CIP elimination scheme in
existing VMs.

The scheme relies on the property that memory accesses
to object fields are performed by using a two-or-more oper-
and addressing mode (in the form of [Base + Offset]).3

Consequently, CIPs should always be accessed by addresses
in the form of [objectAddress + CIP_OFFSET]. If more
than two operands are used during addressing, one of them
should represent the base address while the rest should rep-
resent the offset. This pattern, assuming it is preserved by
the VM, can be identified by HW and handled accordingly
depending on the CID value encoded in the tag.

The goal of the HW extension is to perform the CIP
retrieval presented in Listing 1 simply by executing a single
load instruction at an object address plus a constant offset
CIP_OFFSET, as it happens in theVMs described in Section 2.
The aforementioned address pattern can be identified by the
Address Generation Unit (AGU) in the proposed AGU exten-
sion functionality presented in Fig. 5a. In this scheme, we
present the functional block of an AGU of a given processor,
similarly to [23]. The input to the AGU is represented by two
operands: Base and Offset. The extended AGU has
an extra operand, Class Information Pointer Array Address
(CIPAA), which is stored in a non-frequently changed control
register. The control register has the same value for all AGUs,
in case a core has several AGUs. The CIPAA control register
holds the address of CIPArray and it is defined by the VM.
Furthermore, it is required to be aligned to its size (¼ 2n) in
order to calculate the effective address of the retrieved CIP
location just by combining the CID at an offset shifted by
log2ðsizeofðCIP tÞÞ bits andwith zeros before this offset.

The output address depends on the “is Class Information
Pointer Array Access” (isCIPAA) signal. Since both addresses
from theAGUblock and the extension (combiner) can be gen-
erated in parallel, the proposed scheme adds no significant
delays to the address generation. The CIPAA is stored in a
special purpose control register and can be read only by the
AGU. When the CIPAA is zero, the extended address

Fig. 4. List of CIDs in the “from-space” during GC representing list of
copied objects in “to-space”.

3. This addressing mode is supported by the majority of architec-
tures, and this property has to be preserved by the VM.

134 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 1, JANUARY 2018

generation can be fully deactivated. When the CID is equal
to UNSPECIFIED_CID or the Offset is different from
CIP_OFFSET, then generation happens in the unextended
way. Both UNSPECIFIED_CID and CIP_OFFSET are repre-
sented by all zeroes in our scheme for AGU extension sim-
plicity, although they can be set by the control register aswell.

4.2 Tagged Pointers Compression-Decompression

To reduce the memory footprint of objects, 64-bit VMs apply
the object pointers compression optimization [24]. Depend-
ing on the heap size and object alignment, the possible
values of object pointers can be represented by 32 or fewer
bits, and in this case any 64-bit object pointer can be stored
in a 32-bit location. An untagged object pointer compression
and decompression can require shift and/or add operations
or no extra operations depending on the heap size and base
address of the heap. However, tagged pointers compression
can require extra bit manipulation instructions to gather
and scatter tag and non-tag object pointer bits. To avoid this
overhead, we propose the following Load-Store Unit (LSU)
extension.

The goal of the proposed LSU extension is to perform
scattering of 32 loaded bits of a compressed tagged object
pointer during load operation to a 64-bit register and gath-
ering them during reverse store operation in a limited num-
ber of ways efficiently. Fig. 5b presents the necessary
extensions to the LSU for load-decompress operation and
the part of the LSU responsible for the sign-zero extension.
The proposed LSU extension is activated by an opcode of
the memory access instruction (OPC.CD) indicating that
compression-decompression should be performed.

The extended LSU has an extra operand, Compression-
Decompression Selector (CDS), which is a non-frequently
changed control register. The CDS defines which bits are
compressed-decompressed and it can have four states (s0-
s3) depending on the heap sizes and used tag bits. In our
scheme, these states are: (s0) 32 GB and 0 bits, (s1) 8 GB and
2 bits, (s2) 2 GB and 4 bits, and (s3) 512 MB and 6 bits. In the
presented scheme, addresses of objects are required to be
8-byte aligned. State (s0) is needed to be able to reach the
maximum heap size without code recompilation when com-
pressed pointers are used. Before changing the CDS state to
another state with fewer tag bits in use, objects, whose

pointers are utilizing the bits which will no longer fit into
compressed pointers, must be handled to release them. This
handling means restoring the eliminated CIPs of such
objects and untagging their pointers. A larger number of
states and different object alignments can be supported by
extending the CDS and the scheme. The reverse store-
compress operation is performed likewise but is not shown
in the scheme for simplicity.

4.3 ISA Modifications

The control of the proposed AGU extension can be per-
formed by the introduction and modification of a dedicated
control register CRn. If CRn is set to zero, the extra function-
ality of the AGU will be switched off. The functionality is
enabled when CRn is set to a valid aligned CIPAA. When a
tagged address in the form of [CID:Base + CIP_OFFSET]

is passed to the extended AGU, the generated memory
access will be [CIPAA j (CID � log2ðsizeofðCIP tÞÞ)]. If
such an address is generated during a store operation, it
will be executed as a NOP instruction. The CIPAA stored in
CRn should be maintained by the VM and new CIPs should
be stored in CIPArray. If CID is unspecified or the offset is
different from CIP_OFFSET, then the address generation
will happen in the unextended way.

The control of the proposed LSU extension can be per-
formed by the introduction and modification of a 2-bit dedi-
cated control register CRnþ1 to support 4 compression-
decompression ways as described above. If the instruction
set provides load-pointer and store-pointer instructions,
LSU extensions can be activated by them and no extra
instructions are necessary; for instance, PowerPC has such
instructions to support Technology Independent Machine Inter-
face [25]. However, if load-pointer and store-pointer instruc-
tions are not available, the extension can be activated by
extra opcodes for memory-access operations:

ld32.cd Reg64, [Base + Offset]; // load-decompress
st32.cd [Base + Offset], Reg64; // store-compress

5 EXPERIMENTAL PLATFORM AND METHODOLOGY

As described in Section 2, architectures with tagged pointers
support may have different tag sizes, cache hierarchies, and

Fig. 5. Architectural support for CIPs retrieval and object pointers compression-decompression.

RODCHENKO ET AL.: TYPE INFORMATION ELIMINATION FROM OBJECTS ON ARCHITECTURES WITH TAGGED POINTERS SUPPORT 135

other parameters. Moreover, these architectures are not sup-
ported by state-of-the-art research JVMs. To make our study
more general, and to utilize research JVMs while evaluating
the proposed HW-assisted CIP elimination technique, we
opted for a simulation-based approach.

5.1 ZSim Simulator

ZSim is the simulator of choice since it provides high accu-
racy and fast simulation speed (� 10 MIPS in our experi-
ments). It is capable of running managed workloads and
required minor modifications to run Maxine VM. Alterna-
tive options, such as the Sniper [26], [27] simulator that runs
with JikesRVM, or the full-system gem5 [28] simulator,
were considered but abandoned due to a number of limita-
tions. Regarding the Jikes RVM running on top of the Sniper
simulator [29], [30], it is only possible to run it in a 32-bit
mode, while gem5 has a relatively low simulation speed.

ZSim, being a simulator, has a number of declared ideal-
izations and limitations, among which are: not fully
supported prefetchers, an ideal branch target buffer, not sup-
ported loop stream detector, micro-sequenced instructions
and other components of the microarchitecture (described
in [5]). With the exception of prefetchers, these limitations
and idealizations do not directly affect the evaluation of the
proposed CIP elimination technique. However as shown
in [31] Fig. 3, the impact of the not modeled HW prefetchers
on the performance of the DaCapo benchmarks, which are
used in thiswork, is insignificant.

5.1.1 Extensions

ZSim is a user-level x86-64 simulator with an OOO-core
model of the Westmere microarchitecture. Despite the fact
that current x86-64 architectures do not support tagged
pointers (Section 2), we implemented this extra functional-
ity in ZSim (in a similar way as in [7]). On x86-64, the high
16 bits of an address are not used and, therefore, can be uti-
lized by software that runs on top of ZSim. When memory
accesses with tagged addresses are simulated by ZSim, they
are untagged and executed in an ordinary way during
Pin [32] translation. However, the tags are delegated to the
core simulation model making possible to simulate tagged
pointers and evaluate the proposed AGU extensions. Set-
ting the CRn is performed via a magic NOP instruction. The
proposed AGU extensions are functionally modeled, as
described in Section 4, assuming there is no extra latency
overhead introduced by them.

The VM of choice (Maxine VM) does not support com-
pressed object pointers, so we designed a technique to
model them. The Maxine VM provides an easy way of
changing the layout of objects, and we implemented a ver-
sion where the memory footprint of the primitive data types
is expanded two times, but the memory footprint of the
object references remains the same. During simulation,
memory accesses to the heap are mapped to a memory
address space of half size where the objects would have
been located if they were shrunk by two times. Special
adjustments were also made to correctly simulate object
copying and initialization with zeros, which in Maxine VM
are executed in a number of loops. The addresses of these
loops are reported to ZSim so that only every second

iteration is simulated. This technique is a subcase of the
more general address space morphing technique [7], with a
simulation error of less than 1 percent in geometric mean on
the DaCapo benchmarks.

With this technique, no other changes in the simulator
were made to simulate LSU extensions, as we assume that:
(1) load-decompress and store-compress operations do not
introduce extra overhead in comparison to ordinary load
and store operations; (2) introducing two extra opcodes does
not significantly change the code footprint; (3) Compression-
Decompression Selector changes infrequently.

The power and energy estimation model using McPAT
was integrated from the Sniper simulator [33] for the same
microarchitecture simulated by ZSim in order to perform
energy estimations (in a similar way as in [7]). The proposed
extensions to AGU and LSU were not added in the power
estimation model as the energy overhead of these functional
units extensions is significantly less than the energy savings
from the reduction of memory traffic to DRAM and Last-
Level Cache (LLC).

5.1.2 Configurations

Table 2 details the seven hardware configurations used for
the evaluation. The latencies associated with the levels of
memory hierarchy in the table do not include latencies asso-
ciated with the lower levels, so for instance L2 data hit will
be ð4þ 6 ¼Þ 10 cycles. The memory controller latency is in
core clocks.

Configuration 4C models a 4-core Intel Nehalem CPU.
Configuration 1C models a 1-core Intel Nehalem CPU with
a quarter of the available LLC. Configuration 1CV models a
1-core Intel Nehalem CPU with one online core. Configura-
tions 4CA and 1CA represent the proposed extensions to the
AGU of configurations 4C and 1C respectively. Configura-
tions 4CAL and 1CAL represent the proposed extensions to
both the AGU and the LSU of configurations 4C and 1C

respectively. Configurations 4C, 4CA, 4CAL, 1C, 1CA, and
1CALwere used in the evaluation part, while configurations
4C and 1CV were used for validation against the real plat-
form. Configurations 1C, 1CA and 1CAL were selected to
simulate the scenario when only a quarter of the available
resources is available to the workload (if LLC could be parti-
tioned, adding pressure to the caches). Finally, all configura-
tions support 16-bit pointer tags.

TABLE 2
ZSim Configurations

Name 4C 4CA 4CAL 1C 1CA 1CAL 1CV

Cores x86-64 Nehalem OOO core at 2.66 GHz
4 1

AGU ext. - + + - + + -
LSU ext. - - + - - + -
L1I caches 32 KB, 4-way, LRU, 3-cycle latency
L1D caches 32 KB, 8-way, LRU, 4-cycle latency
L2 caches 256 KB, 8-way, LRU, 6-cycle latency
L3 cache 16-way, hashed, 30-cycle latency

8 MB 2 MB 8 MB
Memory controller 1, 3 DDR3 channels, 47-cycle latency
DRAM 3 GB, DDR3-1066, 1 GB DIMM per chan-

nel

136 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 1, JANUARY 2018

5.2 Maxine VM

Maxine VM was selected as the JVM for our experiments. In
contrast to Jikes RVM, Maxine VM is a 64-bit VM support-
ing x86-64, is compatible with OpenJDK, and is capable of
running the full set of the DaCapo-9.12-bach benchmarks.
The benefits of using Maxine VM are its modularity and its
powerful co-designed integrated debugging support (Max-
ine Inspector) leading to research productivity. The mod-
ules (called schemes) are accessed by scheme interfaces
making possible to switch easily between implementations
for heap operations (GC and memory allocation), object lay-
outs, monitors, references, etc. As these modules are not
optimized across the boundaries in contrast to production
VMs, research productivity comes at the expense of perfor-
mance. The observed performance difference is less than 2x
on the DaCapo-9.12-bach benchmarks against the state-of-
the-art OpenJDK [12].4

The main direct effect of the proposed CIP elimination
technique is the reduction of the memory footprint of the
objects. In all VMs supporting the same object layout, the
memory space savings related to the reduced memory foot-
print of objects are expected to be the same as inMaxine VM.

In our experiments, we used a non-generational semi-
space heap scheme of a constant 2 GB size with a stop-the-
world copying GC, described in Section 3. This is the default
and stable GC scheme in the Maxine VM. In the context of
the single-core configurations that we use, this scheme can
be optimal for throughput. Finally, modern generational
GC algorithms employ a copying scheme based on
Cheney’s breadth-first copying GC scheme for frequent
young generation collections, and the proposed changes
can be applied to a wider spectrum of copying collectors.

As we use a constant 2 GB heap size, Compression-
Decompression Selector was in state (s2), when compressed
object pointers optimization was enabled. In this state, a
loaded 32-bit compressed pointer value is split into 28 and
4 bits, the former shifted by 3 bits and the latter placed in
the high-order bits of the 64-bit register as CID.

5.2.1 Extensions

An extensible communication interface, between Maxine
VM and ZSim, was based on magic NOP operations (hold-
ing extra semantics for ZSim and Maxine VM but executed
as NOPs on x86-64) and Protocol Buffers [35] for serializable
data (such as profiling data, configuration data, etc.). A tag-
ging scheme was added which assigns CIDs to tags of object
pointers in the VM (in a similar way as in [7]). CIP elimina-
tion from object headers in the heap was implemented by
modifying object memory allocation and GC as discussed in
Section 3.

Originally, during GC, a forwarding pointer was stored
in the CIP word of an object in Maxine VM. We modified
Maxine VM to store the forwarding pointers in the MISC
words instead of the eliminated CIP words. Furthermore,
we reserve bit 47 of the MISC word for forwarding pointer
indication (when it is set to one), constraining the range of
heap addresses to have bit 47 set to zero. The decision to
reserve bit 47 of the MISC word has been taken after

considering the least collateral effect to the VM functional-
ity. In this case, the result is a 2� reduction of the possible
concurrent threads from 216 to 215 used in thin locking [36].

Originally, in Maxine VM, a null pointer check is per-
formed by loading the value of the CIP (object pointer plus
offset zero). If the pointer is null, an exception will be raised,
otherwise the CIP would be loaded. If the CIP is stored
alongside the object, a null check can have a positive pre-
fetching effect. In a case of CIP elimination from object
headers, CIPs would be loaded from CIPArray. We
decided to change the offset of the null pointer check to
eight, which points to the MISC word, which is the first
word in the object when CIP is eliminated. Thus, positive
prefetching effects of null checks are preserved.

5.2.2 Configurations

We experimented with five Maxine VM configurations
described in Table 3. Later in the paper,wewill be using pairs
of ZSim and Maxine VM configurations in order to evaluate
the combinations of different configurations (e.g., 4C-B).

5.3 Benchmarks

We used two widely acknowledged and two emerging
benchmarks in our work:

� DaCapo-9.12-bach [8] suite covers a representative
number of server and desktop applications.

� pjbb2005 [9] is a version of the SPECjbb2005 [37]
benchmark with a fixed workload.

� GraphChi-PR [11] is a PageRank algorithm [38] run-
ning on top of the disk-based system for graph ana-
lytics GraphChi.

� SLAMBench [10] is a Java version of computer
vision benchmark for simultaneous localization
and mapping which implements the KinectFusion
algorithm [39].

5.4 Validation

With respect to ZSim, the execution times were validated
against the real system with switched-off prefetchers,5 and
the following expected inconsistencies were found. First, the
execution times of eclipse and tradesoap on the 1CV -B

configuration were more that two times greater than on the

TABLE 3
Maxine VM Configurations

Name Description

B Baseline Maxine VM.
E Bwith CIP Elimination for ZSim configurations

without extra HW support.
EA Bwith CIP Elimination using 16-bit CIDs in

tagged pointers for ZSim configurations with
AGU extensions.

C Bwith Compressed object pointers.
EAL Cwith CIP Elimination using static profile and

4-bit CIDs in tagged pointers for ZSim
configurations with AGU and LSU extensions.

4. Against both the C2 and Graal [34] compilers.

5. We disabled the prefetchers from the real hardware in order to
achieve a fair comparison since ZSim does not fully support hardware
prefetchers.

RODCHENKO ET AL.: TYPE INFORMATION ELIMINATION FROM OBJECTS ON ARCHITECTURES WITH TAGGED POINTERS SUPPORT 137

real system. Second, the execution times of avrora on the
1CV -B and 4C-B configurations were more than three times
less than on the real system. These inconsistencies are associ-
ated with the following declared ZSim limitations: (1) differ-
ent thread scheduling algorithms used in the real system and
in ZSim, and (2) the inability of ZSim to simulate non-user-
level code. The geometric mean difference in execution time
between the real and simulated platforms for 1CV -B and
4C-B configurationswasmeasured to be 10 percent.

5.5 Experimental Methodology

In our experiments, we used a constant heap size of 2 GB,
where only 1 GB is used in the semi-space scheme. Although
VMs can support variable heap sizes, the variable heap size
will only directly affect the amount of GC and heap resize
work. We did separate evaluations of execution times of GC,
as one of the positive effects of the proposed technique is the
reduction in the amount of GC work to be performed. Thus,
the presented data allow making analytical estimations of
the proposed technique for other heap sizes.

Each experiment has been run 10 times, and whiskers
represent 95 percent confidence intervals. The variance for
some of the tests can be up to 5 percent due to the dynamic
nature of the VM or related to nondeterminism aspects in
GC, JIT compilation, threads scheduling, and other factors.
ZSim is a DBT-based execution-driven simulator, so the
simulation is not deterministic. Assuming normal distribu-
tion, when the whisker crosses zero in a chart showing rela-
tive changes, we are less than 95 percent confident whether
a result is positive or negative.

6 EXPERIMENTAL RESULTS

6.1 Heap Space Savings

The main benefit of CIP elimination from object headers is
heap space savings. Since the number of tag bits can vary on
different architectures, and some of the bits can be utilized
for other purposes, it is important to explore howmuch heap
space savings can be achieved per available tag bits for CIDs
storage. Heap Space Savings (HSS) per available tag bits are
estimated on the two baseline configurations, 1C-B and
1C-C, by collecting profiling information on the number of

all Allocated Objects (AO) for each class AOðcÞ, where c is
class, and on the total allocatedHeap Space Volume (HSV).We
sortAOðcÞ in decreasing order andwe get the Sorted Allocated
Objects SAOðiÞ sequence. Finally, we estimate how much
HSSCðnÞ can be gained for configuration C using n tag bits
available for CIDs storage by using the following formula:

HSSCðnÞ ¼ HSVC � sizeofðCIP tÞ �P2n�2
i¼0 SAOCðiÞ

HSV1C�B

� 100%:

In this estimation, we assume that the AOðcÞ distribution
can be perfectly predicted dynamically or it is known stati-
cally from previous runs. Estimated heap space savings
per tag bits for 1C-B (bottom dark gray bar segments) and
1C-C (full stacked bars) configurations are presented in
Fig. 6a. As depicted in the figure, the number of bits for
CIP elimination required to reach heap space savings close
to maximum can vary for different workloads, and 8 bits
are sufficient to gain 99 percent of possible heap space sav-
ings on selected benchmarks, while 11 bits are enough to
gain 100 percent. These savings can lead to a proportional
reduction in GC times and cache misses due to a reduced
memory footprint. Heap space savings inversely correlate
with mean allocated object size as can be seen in Fig. 6b.
Mean allocated object size is shown for two configurations:
1C-B (left full stacked bar) and 1C-C (right full stacked
bar). Thus, the bottom segments represent mean sizes of
the primitive parts of the objects, the two upper segments
represent mean sizes of the pointers in the objects, and the
uppermost segments represent mean sizes of the CIPs that
can be eliminated from the objects with the technique pro-
posed in the paper. On configurations with CIP elimina-
tion and proposed HW extensions, 1CA-EA and 1CAL-

EAL, we were able to achieve up to 26 percent (SLAM-
Bench) and 10 percent geometric mean heap space sav-
ings. It can be also observed in Fig. 6a that the effect of
object pointers compression on heap space savings (the
first bar for each test) is more significant than the effect of
CIP elimination (the last dark gray bottom segment for
each test) for all tests with the exception of sunflow,
GraphChi-PR, and SLAMBench.

Fig. 6. Estimation of heap space savings and mean allocated object size for different configurations.

138 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 1, JANUARY 2018

6.2 Effects of CIP Elimination on GC

First, we examine how much time is spent in GC invoca-
tions relative to the execution time for configurations with
and without CIP elimination. Relative GC times to execu-
tion times are presented in Fig. 7a. Since GC never hap-
pens on avrora, batik, fop, and luindex on the tested
configurations, the results for these tests are not shown in
the figure. When no space is left in the “from-space”, a
Garbage Collection Invocation (GCI) occurs that copies live
objects to the “to-space”. The number of GCIs during exe-
cution of each benchmark for each configuration is shown
below each bar. Configurations with (*-E*) and without
(*-B, *-C) CIP elimination are depicted adjacently. The
evaluation is done pairwise 4CA-EA against 4C-B, 4CAL-
EAL against 4C-C, etc. We will use the following notation
hereafter: 4CA-EA/4C-B means 4CA-EA compared
against 4C-B. It can be seen that CIP elimination leads to
reduction in the number of GC invocations and relative
GC times to execution times for jython (*CAL-EAL/*C-
C), lusearch (*CA-EA/*C-B), tradesoap (*CA-EA/
*C-B, 1CAL-EAL/1C-C), xalan (*CAL-EAL/*C-C),
pjbb2005 (*CAL-EAL/*C-C), and SLAMBench (*CA-
EA/*C-B, *CAL-EAL/*C-C). For all subsequent figures
the deltas in garbage collection invocations for compared
configurations (4GCI) not equal to zeros will be shown
below the bars.

Second, we investigate how GC time is affected as a
result of CIP elimination. The relative reductions in GC
times are presented in Fig. 7b. When the number of garbage
collection invocations is reduced as a result of CIPs elimina-
tion, the GC times reductions are above 16 percent
(lusearch 1CA-EA/1C-B). When 4GCI is zero, the GC
times are reduced for the majority of tests with no increases
above 3 percent (tradesoap 4CAL-EAL/4C-C). In two
cases (GraphChi-PR *CAL-EAL/*C-C), the reduction in
GC time is approximately 50 percent, which is explained by

the high dynamism in the number of live objects, as was
shown by Nguyen et al. in Fig. 2 [40].

The presented data provide evidence that the mainte-
nance and traversal of the list of CIDs during copying GC
(described in Section 3) do not introduce significant over-
head and do not overweigh the performance gains. Provided
that the set of live objects is the same during copying GC, the
gains are due to lessmemory footprint of the copied objects.

6.3 Effect of CIP Elimination on Execution Time for
Configurations without HW Extensions

In this experiment, we investigate the effect of the SW-only
CIP elimination, without the proposed HW extensions, on
execution time. We evaluate the following configurations:
4C-E/4C-B, and 1C-E/1C-B. We observe 0 and 1 percent
geometric mean execution time degradations for the afore-
mentioned configurations respectively, which are shown in
Fig. 8a (the first two series). Execution time reductions
when 4GCI is zero are observed for pjbb2005 and SLAM-

Bench. On pjbb2005 reductions are 1.7 percent for 4C-E/
4C-B and 1.6 percent for 1C-E/1C-B, and on SLAMBench

reductions are 6.5 percent for 4C-E/4C-B and 6.8 percent
for 1C-E/1C-B. Our observations correspond with the fact,
that pjbb2005 was classified as “cache-miss-intensive”,
while DaCapo-9.12 as “non-cache-miss-intensive” by
Inoue and Nakatani [41]. The performance degradation for
DaCapo-9.12 is observed because the performance over-
head during the SW-only CIP retrieval from tagged pointers
is not covered by the gains due to cache miss reductions.

We validate this hypothesis by measuring the percentage
of CIP Loads Per Kilo-Instruction (CIPLPKI) on the 1C-B con-
figuration, which is shown as the fifth (the last) series in
Fig. 8a with a geometric mean value of 5.4 CIPLPKI. As dis-
cussed in Section 3, SW-only CIP retrieval from tagged
pointers has the dynamic execution height of 5.5 instructions
in our implementation. Thus, the estimated overhead of CIP

Fig. 7. Changes in GC times and numbers of GC invocations for various configurations.

RODCHENKO ET AL.: TYPE INFORMATION ELIMINATION FROM OBJECTS ON ARCHITECTURES WITH TAGGED POINTERS SUPPORT 139

access on the 1C-E configuration will be 24.3 extra instruc-
tions per kilo-instruction. We test our estimation by evaluat-
ing configurations with enabled CIP elimination with the
proposed AGU extensions against the SW-only CIP elimina-
tion: 4CA-EA/4C-E, and 1CA-EA/1C-E, which are the third
and the fourth series in Fig. 8a. The relative geometric mean
execution time reductions for these configurations are 3.1
and 2.8 percent respectively, which are consistent with our
estimation andmotivate the usage of the AGU extension.

The data for the SW-only CIP elimination for configura-
tions with compressed pointers is not presented in the
paper. The reason behind that is the high estimated perfor-
mance overhead, since loads of compressed object pointers
happen approximately 6 times more frequently than CIP
loads in geometric mean for 1C-C configuration, with the
geometric mean rate of 32.4 loads of compressed object
pointers per kilo-instruction. A few modern architectures,
like Intel Haswell and AMD Excavator, provide advanced
instructions for bit manipulation, such as PDEP and
PEXT [20], that can be used for tagged pointers compression
and decompression in one instruction. However, these
instructions have a high latency of 3 cycles [42]. We esti-
mated that the overhead of compressed pointers decom-
pression using these instructions is 32.4 extra instructions
and 97.2 extra execution cycles per kilo-instruction. This sig-
nificant overhead motivates the usage of the LSU extension.

6.4 Effect of CIP Elimination on Execution Time for
Configurations with HW Extensions

In this experiment,we investigate the effect of CIP elimination
for configurations with the proposed AGU and LSU exten-
sions. We compare the following configurations: 4CA-EA/
4C-B, 4CAL-EAL/4C-C, 1CA-EA/1C-B, and 1CAL-EAL/
1C-C. The relative reductions in execution time for these con-
figurations are shown in Fig. 8b, with geometric mean values
of 2.9, 5.0, 1.4, and 2.8 percent respectively. The maximum
reductions are 13.6, 49.1, 6.9, and 22.6 percent respectively,
with no degradations on single tests below 4 percent.

6.5 Reduction in Cache Misses

When the CIPs are eliminated from the object headers, they
are densely located in CIPArray, and the memory footprint

of the allocated objects in the heap is smaller. Both factors
lead to a decrease in cache misses. We test our hypothesis
by comparing the following configurations: 4CA-EA/4C-B,
4CAL-EAL/4C-C, 1CA-EA/1C-B, and 1CAL-EAL/1C-C.
We observed significant relative reductions in L3 Cache
Misses Per Kilo-Instruction (L3CMPKI) which are shown in
Fig. 9b, with geometric mean values of 12.7, 10.0, 12.4, and
9.2 percent respectively. These values are correlated with
the heap space savings estimations presented in Fig. 6a,
which are 13.3 percent for 1C-B(11 bits)/1C-B(0 bits) and
7.2 percent for 1C-C(4 bits)/1C-C(0 bits).

Relative reductions in L2 Cache Misses Per Kilo-Instruction
(L2CMPKI) are more moderate compared to L3CMPKI. As
shown in Fig. 9a, the geometric mean values are 8.2, 4.4, 8.5,
and 5.8 percent for respective configurations. The relative
increase in L2CMPKI in pjbb2005 for 4CAL-EAL/4C-C
and 1CAL-EAL/1C-C configurations is related to the com-
plete elimination of GC invocations on configurations with
CIP elimination, 4CAL-EAL and 1CAL-EAL. Furthermore,
GC can have different cache miss characteristics from the
workload and can have a positive effect on the locality of
copied objects.

6.6 Reduction in Dynamic Energy

Reduction in cache misses leads to less DRAM and L3 cache
traffic which is consequently translated to Dynamic Energy
(DE) reductions in these components.We test our hypothesis
on the same configurations as before. The relative reductions
inDRAMDynamic Energy (DRAMDE) are shown in Fig. 10b.
The geometric mean values of 12.9, 11.1, 12.3, and 10.6 per-
cent are correlated with L3CMPKI reductions for the respec-
tive configurations. Maximum relative DRAMDE reductions
reach up to 27.6, 50.1, 27.0, 41.5 percent respectively.

Finally, relative reductions in L3 Dynamic Energy (L3DE)
are shown in Fig. 10a, with geometric mean values of 8.6,
5.3, 9.3, and 7.6 percent respectively.

7 RELATED WORK

From a historical perspective, Steele [43] proposed using
contiguous memory regions for LISP, so that only variables
of a certain data type can be in a given region. Using

Fig. 8. Relative changes in Execution Times (ET) for various configurations.

140 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 1, JANUARY 2018

segmentation and enforcing data structures alignment,
Dybvig et al. [44] investigated a hybrid technique utilizing
also the least significant bits of the address for implicit typ-
ing for the Scheme language. Continuing taking advantage
of the contiguous virtual addresses for implicit typing,
Bacon et al. [51] used this technique for compression of
object headers in the context of 32-bit Jikes RVM. They
gained most of the space savings by eliminating the thin
lock word. The implicit typing scheme via virtual address-
ing was later explored in the context of the 64-bit Jikes RVM
on PowerPC by Venstermans et al. [45] to remove the object
header completely.

In contrast to these related systems, our approach using
object typing via tagged pointers does not bind objects to
contiguous memory regions. Thus, our proposed technique
can facilitate additional optimizations such as data transfor-
mations and object fusing [46] and objects alignment and
collocation as proposed by Inoue and Nakatani [41].

Using tags for storing type information has been used in
many computer systems [47], [48], [49]. However, the main
use case of taggedpointers is capability-based securitywhich

also requires tagged memory. A generalized hardware sup-
port for tag processing has been recently proposed by
Dhawan et al. [50], which can be extended for performance
purposes by theHW extensions introduced in this work.

8 CONCLUSIONS

We have demonstrated a novel and open-source experimen-
tal platform for HW/SW co-design research, based on the
Maxine VM, ZSim, and McPAT, which laid the foundation
for the MaxSim [7] platform. By using this platform, we
have thoroughly evaluated a proposed technique of CIP
elimination by encoding CIDs in tagged pointers. Although
this technique significantly reduces memory footprint, we
have shown that retrieving CIPs from object pointer tags
without extra HW support can degrade performance. To
address performance issues, we have proposed novel hard-
ware extensions to the AGU removing the performance
degradations associated with CIP retrieval from tagged
pointers and to the LSU for efficient load-decompression
and store-compression of tagged object pointers.

Fig. 9. Relative reductions in cache misses per kilo-instruction for various configurations.

Fig. 10. Relative reductions in dynamic energy for various configurations.

RODCHENKO ET AL.: TYPE INFORMATION ELIMINATION FROM OBJECTS ON ARCHITECTURES WITH TAGGED POINTERS SUPPORT 141

In addition, the experimental results for the proposed
HW/SW co-designed technique achieve significant heap
space savings, dynamic energy reductions, and performance
improvements without significant regressions. Although the
proposed technique has been researched in the context of a
research JVM implementation, it can be widely applicable to
other object-oriented languages andmanaged runtimes.

ACKNOWLEDGMENTS

This work is partially supported by EPSRC grants PAMELA
EP/K008730/1, AnyScale EP/L000725/1, and EU Horizon
2020 ACTiCLOUD 732366 grant. A. Rodchenko is funded
by a Microsoft Research PhD Scholarship, A. Pop is funded
by a Royal Academy of Engineering Research Fellowship,
and M. Luj�an is funded by a Royal Society University
Research Fellowship.

REFERENCES

[1] C. Wimmer, M. Haupt, M. L. van de Vanter, M. Jordan, L. Dayn�es,
and D. Simon, “Maxine: An approachable virtual machine for,
and in, Java,” ACM Trans. Archit. Code Optimization, vol. 9, no. 4,
pp. 30:1–20:24, Jan. 2013.

[2] C. Kotselidis, J. Clarkson, A. Rodchenko, A. Nisbet, J. Mawer, and
M. Luj�an, “Heterogeneous managed runtime systems: A com-
puter vision case study,” in Proc. 13th ACM SIGPLAN/SIGOPS Int.
Conf. Virtual Execution Environments, 2017, pp. 74–82.

[3] B. Alpern, et al., “Implementing Jalape~no in Java,” in Proc. 14th
ACM SIGPLAN Conf. Object-Oriented Program., Syst. Languages
Appl., 1999, pp. 314–324.

[4] J. Larus and G. Hunt, “The singularity system,” Commun. ACM,
vol. 53, no. 8, pp. 72–79, Aug. 2010.

[5] D. Sanchez and C. Kozyrakis, “ZSim: Fast and accurate microarch-
itectural simulation of thousand-core systems,” in Proc. 40th Annu.
Int. Symp. Comput. Archit., 2013, pp. 475–486.

[6] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “The McPAT framework for multicore and many-
core architectures: Simultaneously modeling power, area, and
timing,” ACM Trans. Archit. Code Optimization, vol. 10, no. 1,
pp. 5:1–5:29, Apr. 2013.

[7] A. Rodchenko, C. Kotselidis, A. Nisbet, A. Pop, and M. Luj�an,
“MaxSim: A simulation platform for managed applications,”
in Proc. IEEE Int. Symp. Performance Anal. Syst. Softw., 2017,
pp. 141–151.

[8] S. M. Blackburn, et al., “The DaCapo benchmarks: Java bench-
marking development and analysis,” in Proc. 21st Annu. ACM
SIGPLAN Conf. Object-Oriented Program. Syst. Languages Appl.,
2006, pp. 169–190.

[9] pjbb2005, 2005. [Online]. Available: http://users.cecs.anu.edu.au/
steveb/research/research-infrastructure/pjbb2005 Last Accessed
on:May 12, 2017.

[10] L. Nardi, et al., “Introducing SLAMBench, a performance and
accuracy benchmarking methodology for SLAM,” in Proc. IEEE
Int. Conf. Robot. Autom., 2015, pp. 5783–5790.

[11] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: Large-scale
graph computation on just a PC,” in Proc. 10th USENIX Conf.
Operating Syst. Des. Implementation, 2012, pp. 31–46.

[12] OpenJDK, 2017. [Online]. Available: http://openjdk.java.net, Last
Accessed on: May 12, 2017.

[13] C. Click, “Cliff Click’s blog: Biased locking,” 2010. [Online]. Avail-
able: http://www.cliffc.org/blog/2010/01/09/biased-locking/
Last Accessed on: May 12, 2017.

[14] T. M. Chilimbi, B. Davidson, and J. R. Larus, “Cache-conscious
structure definition,” in Proc. ACM SIGPLAN Conf. Program. Lan-
guage Des. Implementation, 1999, pp. 13–24.

[15] ARM Cortex-A series programmer’s guide for ARMv8-A, 2015.
[Online]. Available: http://infocenter.arm.com/help/topic/com.
arm.doc.den0024a/DEN0024A_v8_architecture_PG.pdf, Last
Accessed on: May 12, 2017.

[16] D. Brash, “ARMv8-A architecture–2016 additions,” 2016. [Online].
Available: https://community.arm.com/groups/processors/
blog/2016/10/27/armv8-a-architecture-2016-additions, Last
Accessed on: May 12, 2017.

[17] Pointer authentication on ARMv8.3, 2017. [Online]. Available:
https://www.qualcomm.com/media/documents/files/
whitepaper-pointer-authentication-on-armv8-3.pdf, Last Accessed
on:May 12, 2017.

[18] S. Phillips, “M7: Next generation SPARC,” 2014. [Online]. Avail-
able: http://www.oracle.com/us/products/servers-storage/
servers/sparc-enterpr ise/migration/m7-next-gen-sparc-
presentation-2326292.html, Last Accessed on: May 12, 2017.

[19] K. Aingaran, et al., “M7: Oracle’s next-generation Sparc process-
or,” IEEE Micro, vol. 35, no. 2, pp. 36–45, Mar. 2015.

[20] Intel 64 and IA-32 architectures software developers manual. vol-
ume 1: Basic architecture, 2011. [Online]. Available: http://
download.intel.com/design/processor/manuals/253665.pdf,
Last Accessed on: May 12, 2017.

[21] 5-level paging and 5-level EPT white paper, 2016. [Online]. Avail-
able: https://software.intel.com/sites/default/files/managed/
2b/80/5-level_paging_white_paper.pdf, Last Accessed on:
May 12, 2017.

[22] C. J. Cheney, “A nonrecursive list compacting algorithm,” Com-
mun. ACM, vol. 13, no. 11, pp. 677–678, Nov. 1970.

[23] S. Mathew, M. Anders, R. K. Krishnamurthy, and S. Borkar, “A 4-
GHZ 130-nm address generation unit with 32-bit sparse-tree
adder core,” IEEE J. Solid-State Circuits, vol. 38, no. 5, pp. 689–695,
May 2003.

[24] A. R. Adl-Tabatabai, et al., “Improving 64-bit Java IPF perfor-
mance by compressing heap references,” in Proc. Int. Symp. Code
Generation Optimization, 2004, pp. 100–110.

[25] J. Smith and R. Nair, Virtual Machines: Versatile Platforms for Sys-
tems and Processes. San Mateo, CA, USA: Morgan Kaufmann, 2005.

[26] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring
the level of abstraction for scalable and accurate parallel multi-
core simulation,” in Proc. Int. Conf. High Performance Comput.
Netw. Storage Anal., 2011, pp. 52:1–52:12.

[27] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout,
“An evaluation of high-level mechanistic core models,” ACM
Trans. Archit. Code Optimization, vol. 11, no. 3, pp. 28:1–28:25,
Aug. 2014.

[28] N. Binkert, et al., “The gem5 simulator,” ACM SIGARCH Comput.
Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[29] Jikes–Sniper page in Sniper online documentation, 2014. [Online].
Available: http://snipersim.org/w/Jikes, Last Accessed on:
May 12, 2017.

[30] J. B. Sartor, W. Heirman, S. M. Blackburn, L. Eeckhout, and
K. S. McKinley, “Cooperative cache scrubbing,” in Proc. 23rd Int.
Conf. Parallel Archit. Compilation, 2014, pp. 15–26.

[31] H. Cook, M. Moreto, S. Bird, K. Dao, D. A. Patterson, and K. Asa-
novic, “Ahardware evaluation of cache partitioning to improve uti-
lization and energy-efficiencywhile preserving responsiveness,” in
Proc. 40th Annu. Int. Symp. Comput. Archit., 2013, pp. 308–319.

[32] C.-K. Luk, et al., “Pin: Building customized program analysis tools
with dynamic instrumentation,” in Proc. ACM SIGPLAN Conf. Pro-
gram. Language Des. Implementation, 2005, pp. 190–200.

[33] W. Heirman, S. Sarkar, T. E. Carlson, I. Hur, and L. Eeckhout,
“Power-aware multi-core simulation for early design stage hard-
ware/software co-optimization,” in Proc. 21st Int. Conf. Parallel
Archit. Compilation Techn., 2012, pp. 3–12.

[34] OpenJDK: Graal project, 2016. [Online]. Available: http://openjdk.
java.net/projects/graal/, Last Accessed on:May 12, 2017.

[35] Protocol Buffers - Google’s data interchange format (ver. 2.6.1),
2014. [Online]. Available: https://developers.google.com/
protocol-buffers/, Last Accessed on: May 12, 2017.

[36] D. F. Bacon, R. Konuru, C. Murthy, and M. Serrano, “Thin locks:
Featherweight synchronization for Java,” in Proc. ACM SIGPLAN
Conf. Program. Language Des. Implementation, 1998, pp. 258–268.

[37] SPECjbb2005, 2005. [Online]. Available: http://www.spec.org/
jbb2005/, Last Accessed on: May 12, 2017.

[38] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank
citation ranking: Bringing order to the Web,” in Proc. 7th Int. World
Wide Web Conf., 1998, pp. 161–172.

[39] R. A. Newcombe, et al., “KinectFusion: Real-time dense surface
mapping and tracking,” in Proc. 10th IEEE Int. Symp. Mixed Aug-
mented Reality, 2011, pp. 127–136.

[40] K. Nguyen, et al., “Yak: A high-performance big-data-friendly
garbage collector,” in Proc. 12th USENIX Symp. Operating Syst.
Des. Implementation, 2016, pp. 349–365.

[41] H. Inoue and T. Nakatani, “Identifying the sources of cache misses
in Java programs without relying on hardware counters,” in Proc.
Int. Symp. Memory Manage., 2012, pp. 133–142.

142 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 1, JANUARY 2018

http://users.cecs.anu.edu.au/steveb/research/research-infrastructure/pjbb2005
http://users.cecs.anu.edu.au/steveb/research/research-infrastructure/pjbb2005
http://openjdk.java.net
http://www.cliffc.org/blog/2010/01/09/biased-locking/
http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/DEN0024A_v8_architecture_PG.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/DEN0024A_v8_architecture_PG.pdf
https://community.arm.com/groups/processors/blog/2016/10/27/armv8-a-architecture-2016-additions
https://community.arm.com/groups/processors/blog/2016/10/27/armv8-a-architecture-2016-additions
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
http://www.oracle.com/us/products/servers-storage/servers/sparc-enterpr ise/migration/m7-next-gen-sparc-presentation-2326292.html
http://www.oracle.com/us/products/servers-storage/servers/sparc-enterpr ise/migration/m7-next-gen-sparc-presentation-2326292.html
http://www.oracle.com/us/products/servers-storage/servers/sparc-enterpr ise/migration/m7-next-gen-sparc-presentation-2326292.html
http://download.intel.com/design/processor/manuals/253665.pdf
http://download.intel.com/design/processor/manuals/253665.pdf
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
http://snipersim.org/w/Jikes
http://openjdk.java.net/projects/graal/
http://openjdk.java.net/projects/graal/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
http://www.spec.org/jbb2005/
http://www.spec.org/jbb2005/

[42] A. Fog, “Instruction tables: Lists of instruction latencies, through-
puts and micro-operation breakdowns for Intel, AMD and VIA
CPUs,” 2016. [Online]. Available: http://www.agner.org/
optimize/instruction_tables.pdf, Last Accessed on: May 12, 2017.

[43] G. Steele,Data Representation in PDP-10 MacLISP. Cambridge, MA,
USA: Massachusetts Inst. Technol., Artif. Intell. Laboratory, 1977.

[44] R. K. Dybvig, D. Eby, and C. Bruggeman, “Don’t stop the BIBOP:
Flexible and efficient storage management for dynamically-typed
languages,” Indiana Univ., Bloomington, IN, USA, Tech. Rep.
#400, 1994.

[45] K. Venstermans, L. Eeckhout, and K. De Bosschere, “Java object
header elimination for reduced memory consumption in 64-bit
virtual machines,” ACM Trans. Archit. Code Optimization, vol. 4,
no. 3, pp. 17:1–17:30, Sep. 2007.

[46] C. Wimmer and H. M€ossenb€osck, “Automatic feedback-directed
object fusing,” ACM Trans. Archit. Code Optimization, vol. 7, no. 2,
pp. 7:1–7:35, Oct. 2010.

[47] E. I. Organick, Computer System Organization: The B5700/B6700
Series (ACM Monograph Series). New York, NY, USA: Academic,
1973.

[48] B. Babayan, “E2K technology and implementation,” in Proc. 6th
Int. Euro-Par Conf. Parallel Process., 2000, pp. 18–21.

[49] M. E. Houdek, F. G. Soltis, and R. L. Hoffman, “IBM system/38
support for capability-based addressing,” in Proc. 8th Annu. Int.
Symp. Comput. Archit., 1981, pp. 341–348.

[50] U. Dhawan, et al., “Architectural support for software-defined
metadata processing,” in Proc. 20th Int. Conf. Archit. Support Pro-
gram. Languages Operating Syst., 2015, pp. 487–502.

[51] D. F. Bacon, S. J. Fink, and D. Grove, “Space- and time-efficient
implementation of the Java object model,” in Proc. 16th European
Conf. Object-Oriented Program. (ECOOP), 2002, pp. 111–132.

Andrey Rodchenko received the BSc and MSc
degrees in applied mathematics and physics
from the Moscow Institute of Physics and
Technology, in 2005 and 2007, respectively.
He is currently working toward the PhD degree in
the Advanced Processor Technologies Group,
School of Computer Science, University of Man-
chester. From 2007 until 2013, he was a software
engineer at Optimizing Technologies (start-up
company) and a senior software engineer at Intel.
His research interests include optimizing compila-

tion, dynamic binary translation, runtime systems, computer architec-
ture, and hardware/software co-design.

Christos Kotselidis is a lecturer in the School of
Computer Science, University of Manchester
working on hardware/software co-designed virtual
machines. He has worked as a principal member
of technical staff at Oracle Labs and as a senior
research scientist at Intel Labs. During his industry
experience, he has worked across the entire stack
of computing including chip design, microarchitec-
ture research, hardware/software co-designed
CPUs, compilers, virtual machines, and garbage
collection. Finally, he authors more than 20 refer-
eed papers and eight patents.

Andy Nisbet received the BSc degree in physics
with electronic engineering, in 1988 and the PhD
degree in electrical & electronic engineering
from Manchester University, in 1993. He was
a postdoctoral researcher with the University of
Manchester prior to lecturing appointments in
computer science at Trinity College, Dublin, and
the Manchester Metropolitan University, United
Kingdom. He is currently a research fellow work-
ing on low-power virtualization for many-core in
the Advanced Processor Technologies Group,

School of Computer Science, University of Manchester. His research
interests embrace managed runtimes, compilation, and novel computa-
tional accelerators.

Antoniu Pop received the MSc degree from
Ecole Nationale Superieure d’Informatique et
Mathematiques Appliquees de Grenoble, in 2004
and the PhD degree from MINES ParisTech, in
2011. He is a lecturer and Royal Academy of
Engineering Research Fellow in the School of
Computer Science, University of Manchester. His
research interests include the challenges of the
many-core revolution, in particular focusing on
high productivity parallel programming models,
performance analysis, and dynamic optimization.

He conducts research on the OpenStream programming language
(http://openstream.info/) and on performance analysis in Aftermath
(http://www.aftermath-tracing.com/).

Mikel Luj�an received the PhD degree in com-
puter science from the University of Manchester.
He is a Royal Society University Research Fellow
in the School of Computer Science, University of
Manchester. His research interests include man-
aged runtime environments and virtualization,
manycore architectures, and application-specific
systems and optimizations.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

RODCHENKO ET AL.: TYPE INFORMATION ELIMINATION FROM OBJECTS ON ARCHITECTURES WITH TAGGED POINTERS SUPPORT 143

http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
http://www.aftermath-tracing.com/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

