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ABSTRACT
In the recent years, we have witnessed an explosion of the usages
of Virtual Machines (VMs) which are currently found in desktops,
smartphones, and cloud deployments. These recent developments
create new research opportunities in the VM domain extending
from performance to energy efficiency, and scalability studies. Re-
search into these directions necessitates research frameworks for
VMs that provide full coverage of the execution domains and hard-
ware platforms. Unfortunately, the state of the art on Research VMs
does not live up to such expectations and lacks behind industrial-
strength software, making it hard for the research community to
provide valuable insights.

This paper presents our work in attempting to tackle those short-
comings by introducing Beehive, our vision towards a modular
and seamlessly extensible ecosystem for research on virtual ma-
chines. Beehive unifies a number of existing state-of-the-art tools
and components with novel ones providing a complete platform
for hardware/software co-design of Virtual Machines.
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1 INTRODUCTION
The last few years there is a movement towards providing open
source modular language virtual machines. Mainly driven by the
need to enable the reuse of successful components across different
VMs, numerous virtual machines such as Oracle’s HotSpot [11],
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IBM J9 [12], .NET [19], Google v8 [8], and RPython [5], have been
recently open sourced. In addition, projects like Eclipse OMR [7]
and Mu [24] provide a set of core components useful to VM im-
plementers, where each component is self-contained and able to
interface with others through well-defined interfaces. This allows
various combinations of different implementations of components
to create a VM that matches the needs of each specific case. Graal
VM [26], on the other hand, combines an efficient just in time (JIT)
compiler with a language implementation framework to allow mul-
tiple languages to be efficiently implemented on top of a Java Virtual
Machine (JVM).

These solutions focus on solving specific issues and often for
specific environments; mainly targeting high peak performance.
However, since today’s VMs are exercising a wide range of de-
vices ranging from cell phones to powerful clusters, diverse stacks
that cover all environments are needed. Such solutions need to ex-
pand beyond a single node and/or hardware architecture enabling
research on complex systems (e.g. clusters or cloud) with heteroge-
neous machines and enormous amounts of memory [1, 10].

2 THE BEEHIVE ECOSYSTEM
Our vision is to take advantage of the movement towards open
source and modular VMs and form an ecosystem of tools that will
enable the next generation of research on VMs. In particular, we
envision an ecosystem with the following characteristics:

• Modular and easily extensible.
• Implemented with high level languages with good IDE sup-
port and low entry barrier.

• Realistic and diverse simulation infrastructures.
• Support of multiple hardware architectures.
• Support of heterogeneous systems.
• Capability of implementing multiple languages.
• Integration with popular research tools.

We believe that such a research VM will provide a solid foun-
dation for the research community. It will also provide a common
baseline for comparing different works and it will bring the com-
munity closer, ultimately improving the quality of the conducted
research.

Figure 1 visualizes the interconnection of tools that comprise the
Beehive ecosystem [15]. On the top layer of the stack are the groups
of applications that the ecosystem aims to improve the state of
the art for. These applications range from the standard benchmark
suites, to applications running on top of Big Data frameworks,
including domain specific applications and implementations of
managed languages.
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The runtime layer (second from top) incorporates all the runtime
mechanisms necessary to execute a managed language. This layer
unifies, under the same compilers and runtimes, high-quality poly-
glot production and research VMs. It will feature two VMs, Maxine
and OpenJDK HotSpot, that share a common optimizing compiler,
Graal, and the Truffle runtime framework. OpenJDK HotSpot repre-
sents the production VMs, while MaxineVM [25] is a meta-circular
research VM.MaxineVMwill ultimately be compatible with the Java
Virtual Machine Compiler Interface (JVMCI), and the JikesRVM’s
Memory Management Toolkit (MMTk) [4], combining two pow-
erful interfaces that will enable experimentation with different
compilers and garbage collectors. The runtime layer will also in-
clude in-house software components and mechanisms [2, 13] that
enable the acceleration of applications on specialized hardware,
like SIMD hardware extensions, GPUs, FPGAs, etc. In order to sup-
port multiple ISAs, MaxineVM and its compilers are being ported
to different architectures. Currently, Beehive executes on x86 and
ARMv7 architectures while ongoing work extends the support for
AArch64 and RISC-V via the CrossISA toolkit [14].

The layer below the runtime layer consists of the Operating
System, the Services and Drivers, and the Virtualization compo-
nents. The services and drivers component integrates a number
of binary instrumentation tools to enable research and rapid pro-
totyping of novel micro-architectures and ISA extensions [9, 17].
These tools will allow for code injection, binary translation and
instrumentation, ISA extensions, and others.

Beehive integrates a variety of simulators providing trade-off se-
lections between simulation speed (i.e. functional), simulation accu-
racy (i.e. cycle-accurate), and engineering efforts required to modify
or implement new hardware timing models (i.e. software or hard-
ware simulators). Therefore, Beehive integrates a software-based
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Figure 1: The Beehive ecosystem

full-system, a software-based user-level, and a hardware-based user-
level simulator; namely Gem5, ZSim, and APTSim respectively.

Gem5 [3] is a software-based full-system simulation framework
capable of modeling numerous hardware architectures. Beehive aug-
ments Gem5 with an interface that allows it to integrate with a vari-
ety of other simulators, such as McPAT [16] (power), HotSpot [23]
(thermal), Voltspot [28] (power), and NVSim [6] (circuit-level). In
addition, Beehive also incorporates machine-learning and data-
analytics techniques in the Gem5 simulation framework enabling
detailed analysis of the output results. Finally, Beehive augments
Gem5 with a fault injection framework for reliability studies that
is flexible, generic/portable, supports multi-cores, and allows for
reproducible experiments.

ZSim [22] combines simulation accuracy with fast simulation
times on x86 (about 10 MIPS in our experiments) and allows the
execution of arbitrary managed workloads via lightweight user-
level virtualization. MaxSim1 [20] is a software-based simulation
platform for x86_64 built on the Beehive ecosystem using the ZSim
simulator. MaxSim can perform fast and accurate simulation of
managed runtime workloads running on top of the Maxine VM
and its capabilities include: 1) low-intrusive microarchitectural
profiling via pointer tagging on x86-64 platforms, 2) modeling of
hardware extensions related, but not limited to, tagged pointers,
and 3) modeling of complex software changes via address-space
morphing. Rodchenko et al. [21] use MaxSim to demonstrate that
hardware software co-designed pointer tagging based optimizations
can be used to eliminate the type information pointer from an
object’s storage.

APTSim [18] is a hardware-based simulator for ARM2 architec-
tures, implemented on Xilinx Zynq platforms [27]. Beehive through
APTSim can directly interface unmodified application executables
with FPGA hardware intellectual property (IP) and thus accelerate
simulation. In APTSim functional simulation occurs natively on
the ARM cores, and cycle-based timing is performed using FPGA
hardware models of the memory system hierarchy and the CPU
micro-architecture. The functional simulation, or an external tool
must produce a trace of address loads/stores, and any program
counter (PC) changes that are consumed by the FPGA timing mod-
els. In Beehive we achieve this through MaxineVM’s optimizing
compiler that instruments the application during JIT compilation.

Combining the above, the Beehive ecosystem will allow for full
system co-design and exploration leading research towards im-
proved performance, energy efficiency, and resiliency. The Beehive
ecosystem is an ongoing project and its components are gradually
being open-sourced at https://github.com/beehive-lab. Each individ-
ual component is being validated against standard methodologies
and provide full coverage of the community-accepted benchmarks.
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1https://github.com/beehive-lab/MaxSim
2It is equally applicable to any valid event trace and CPU ISA, as long as CPU microar-
chitecture models are available.

https://github.com/beehive-lab


On the Future of Research VMs: A Hardware/Software Perspective <Programming’18> Companion, April 9–12, 2018, Nice, France

REFERENCES
[1] 2017. Numascale NumaConnect. (2017). Retrieved Jan 10, 2018 from https:

//www.numascale.com/numa_pdfs/numaconnect-white-paper.pdf
[2] Colin Barrett, Christos Kotselidis, Foivos S. Zakkak, Nikos Foutris, and Mikel

Luján. 2017. Experiences with Building Domain-Specific Compilation Plugins in
Graal. In Proceedings of the 14th International Conference on Managed Languages
and Runtimes (ManLang 2017). ACM, New York, NY, USA, 73–84. https://doi.
org/10.1145/3132190.3132207

[3] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit.
News 39, 2 (Aug. 2011), 1–7. https://doi.org/10.1145/2024716.2024718

[4] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. 2004. Oil and
Water? High Performance Garbage Collection in Java with MMTk (ICSE ’04).

[5] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. 2009.
Tracing the Meta-level: PyPy’s Tracing JIT Compiler. In Proceedings of the 4th
Workshop on the Implementation, Compilation, Optimization of Object-Oriented
Languages and Programming Systems (ICOOOLPS ’09). ACM, New York, NY, USA,
18–25. https://doi.org/10.1145/1565824.1565827

[6] Xiangyu Dong, Cong Xu, Norm Jouppi, and Yuan Xie. 2014. NVSim: A Circuit-
Level Performance, Energy, and Area Model for Emerging Non-volatile Mem-
ory. Springer New York, New York, NY, 15–50. https://doi.org/10.1007/
978-1-4419-9551-3_2

[7] Eclipse Foundation. 2017. Eclipse OMR. (2017). Retrieved Jan 10, 2018 from
https://www.eclipse.org/omr/

[8] Google. 2017. v8. (2017). Retrieved Jan 10, 2018 from https://developers.google.
com/v8/

[9] Cosmin Gorgovan, Amanieu d’Antras, and Mikel Luján. 2016. MAMBO: A Low-
Overhead Dynamic Binary Modification Tool for ARM. ACM Trans. Archit. Code
Optim. 13, 1, Article 14 (April 2016), 26 pages. https://doi.org/10.1145/2896451

[10] Georgios Goumas, Konstantinos Nikas, Ewnetu Bayuh Lakew, Christos Kotselidis,
Andrew Attwood, Erik Elmroth, Michail Flouris, Nikos Foutris, John Goodacre,
Davide Grohmann, Vasileios Karakostas, Panagiotis Koutsourakis, Martin Ker-
sten, Mikel Luján, Einar Rustad, John Thomson, Luis Tomás, Atle Vesterkjaer,
Jim Webber, Ying Zhang, and Nectarios Koziris. 2017. ACTiCLOUD:Enabling the
Next Generation of Cloud Applications. In 37th IEEE International Conference on
Distributed Computing Systems (ICDCS 2017).

[11] The OpenJDK HotSpot Group. 2017. OpenJDK HotSpot. (2017). Retrieved Jan
10, 2018 from http://openjdk.java.net/projects/jdk/

[12] IBM and Eclipse Foundation. 2017. Eclipse OpenJ9. (2017). Retrieved Jan 10,
2018 from https://www.eclipse.org/openj9/

[13] Christos Kotselidis, James Clarkson, Andrey Rodchenko, Andy Nisbet, John
Mawer, and Mikel Luján. 2017. Heterogeneous Managed Runtime Systems: A
Computer Vision Case Study. In Proceedings of the 13th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE ’17). ACM, New
York, NY, USA, 74–82. https://doi.org/10.1145/3050748.3050764

[14] Christos Kotselidis, AndyNisbet, Foivos S. Zakkak, and Nikos Foutris. 2017. Cross-
ISA Debugging in Meta-circular VMs. In Proceedings of the 9th ACM SIGPLAN
International Workshop on Virtual Machines and Intermediate Languages (VMIL
2017). ACM, New York, NY, USA, 1–9. https://doi.org/10.1145/3141871.3141872

[15] Christos Kotselidis, Andrey Rodchenko, Colin Barrett, Andy Nisbet, John Mawer,
Will Toms, James Clarkson, et al. 2015. Project Beehive: A Hardware/Software

Co-designed Stack for Runtime and Architectural Research. In 9th International
Workshop on Programmability and Architectures for Heterogeneous Multicores
(MULTIPROG) (2015). http://arxiv.org/abs/1509.04085

[16] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,
and Norman P. Jouppi. 2013. The McPAT Framework for Multicore and Manycore
Architectures: Simultaneously Modeling Power, Area, and Timing. ACM Trans.
Archit. Code Optim. 10, 1, Article 5 (April 2013), 29 pages. https://doi.org/10.
1145/2445572.2445577

[17] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation.
In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’05). ACM, New York, NY, USA, 190–200. https:
//doi.org/10.1145/1065010.1065034

[18] John Mawer, Oscar Palomar, Cosmin Gorgovan, Andy Nisbet, Will Toms, and
Mikel Luján. 2017. The Potential of Dynamic Binary Modification and CPU-
FPGA SoCs for Simulation. In 2017 IEEE 25th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). 144–151.

[19] .NET. 2018. Microsoft .NET. (2018). Retrieved Jan 10, 2018 from https://github.
com/Microsoft/dotnet

[20] Andrey Rodchenko, Christos Kotselidis, Andy Nisbet, Antoniu Pop, and Mikel
Luján. 2017. MaxSim: A Simulator Platform for Managed Applications. In ISPASS
- IEEE International Symposium on Performance Analysis of Systems and Software.

[21] Andrey Rodchenko, Christos Kotselidis, Andy Nisbet, Antoniu Pop, and Mikel
Luján. 2018. Type Information Elimination from Objects on Architectures with
Tagged Pointers Support. IEEE Trans. Comput. 67, 1 (Jan 2018), 130–143. https:
//doi.org/10.1109/TC.2017.2709739

[22] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and Accurate Mi-
croarchitectural Simulation of Thousand-core Systems. In Proceedings of the 40th
Annual International Symposium on Computer Architecture (ISCA ’13). ACM, New
York, NY, USA, 475–486. https://doi.org/10.1145/2485922.2485963

[23] Kevin Skadron, Mircea R Stan,Wei Huang, Sivakumar Velusamy, Karthik Sankara-
narayanan, and David Tarjan. 2003. Temperature-aware microarchitecture. In
30th Annual International Symposium on Computer Architecture, 2003. Proceedings.
2–13. https://doi.org/10.1109/ISCA.2003.1206984

[24] Kunshan Wang, Yi Lin, Stephen M. Blackburn, Michael Norrish, and Antony L.
Hosking. 2015. Draining the Swamp: Micro Virtual Machines as Solid Foundation
for Language Development (SNAPL 2015).

[25] Christian Wimmer, Michael Haupt, Michael L. Van De Vanter, Mick Jordan,
Laurent Daynès, and Douglas Simon. 2013. Maxine: An Approachable Virtual
Machine for, and in, Java. ACM TACO 9, 4, Article 30 (Jan. 2013).

[26] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles
Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko.
2013. One VM to Rule Them All (Onward! 2013).

[27] Xilinx. 2016. Zynq Ultrascale+ MPSoC Product Selection Guide. (2016). Re-
trieved January 17 2018 from https://www.xilinx.com/support/documentation/
selection-guides/zynq-ultrascale-plus-product-selection-guide.pdf

[28] Runjie Zhang, Ke Wang, Brett H. Meyer, Mircea R. Stan, and Kevin Skadron.
2014. Architecture Implications of Pads As a Scarce Resource. In Proceeding of
the 41st Annual International Symposium on Computer Architecuture (ISCA ’14).
IEEE Press, Piscataway, NJ, USA, 373–384. http://dl.acm.org/citation.cfm?id=
2665671.2665728

https://www.numascale.com/numa_pdfs/numaconnect-white-paper.pdf
https://www.numascale.com/numa_pdfs/numaconnect-white-paper.pdf
https://doi.org/10.1145/3132190.3132207
https://doi.org/10.1145/3132190.3132207
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/1565824.1565827
https://doi.org/10.1007/978-1-4419-9551-3_2
https://doi.org/10.1007/978-1-4419-9551-3_2
https://www.eclipse.org/omr/
https://developers.google.com/v8/
https://developers.google.com/v8/
https://doi.org/10.1145/2896451
http://openjdk.java.net/projects/jdk/
https://www.eclipse.org/openj9/
https://doi.org/10.1145/3050748.3050764
https://doi.org/10.1145/3141871.3141872
http://arxiv.org/abs/1509.04085
https://doi.org/10.1145/2445572.2445577
https://doi.org/10.1145/2445572.2445577
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1065010.1065034
https://github.com/Microsoft/dotnet
https://github.com/Microsoft/dotnet
https://doi.org/10.1109/TC.2017.2709739
https://doi.org/10.1109/TC.2017.2709739
https://doi.org/10.1145/2485922.2485963
https://doi.org/10.1109/ISCA.2003.1206984
https://www.xilinx.com/support/documentation/selection-guides/zynq-ultrascale-plus-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/zynq-ultrascale-plus-product-selection-guide.pdf
http://dl.acm.org/citation.cfm?id=2665671.2665728
http://dl.acm.org/citation.cfm?id=2665671.2665728

	Abstract
	1 Introduction
	2 The Beehive Ecosystem
	Acknowledgments
	References

