
Heterogeneous Managed Runtime Systems:
A Computer Vision Case Study

Christos Kotselidis, James Clarkson, Andrey Rodchenko,
Andy Nisbet, John Mawer, and Mikel Luján

School of Computer Science
The University of Manchester

Oxford Road, Manchester, M13 9PL, UK
{christos.kotselidis,james.clarkson,andrey.rodchenko,andy.nisbet,john.mawer,mikel.lujan}@manchester.ac.uk

Abstract
Real-time 3D space understanding is becoming prevalent
across a wide range of applications and hardware platforms.
To meet the desired Quality of Service (QoS), computer vi-
sion applications tend to be heavily parallelized and exploit
any available hardware accelerators. Current approaches to
achieving real-time computer vision, evolve around program-
ming languages typically associated with High Performance
Computing along with binding extensions for OpenCL or
CUDA execution.

Such implementations, although high performing, lack
portability across the wide range of diverse hardware re-
sources and accelerators. In this paper, we showcase how a
complex computer vision application can be implemented
within a managed runtime system. We discuss the complex-
ities of achieving high-performing and portable execution
across embedded and desktop con�gurations. Furthermore,
we demonstrate that it is possible to achieve the QoS target
of over 30 frames per second (FPS) by exploiting FPGA and
GPGPU acceleration transparently through the managed
runtime system.

Keywords GPU Acceleration, Java Virtual Machines, Het-
erogeneous Runtime Systems, SLAM, Computer Vision

1 Introduction
Computer Vision (CV) applications, and in particular real
time 3D space understanding, are becoming increasingly
prevalent in both desktop and mobile domains. A good exam-
ple is the �eld of robotics, where researchers are developing
complex applications which demand high levels of perfor-
mance. Furthermore, such applications could be deployed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
VEE’17, China
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to ACM. 978-1-4503-4948-2/17/04. . . $15.00
DOI:

across di�erent scenarios with diverse characteristics. For in-
stance, the same CV application could be used in isolation to
map a room using a mobile phone [35] or as a sub-component
of a navigation system within a self-driving car [8].

A common characteristic of CV applications, regardless
of the scenario they are used, is their extreme computational
demands. Typically, they are written in programming lan-
guages such as C++ and OpenMP with binding extensions for
OpenCL or CUDA execution. For example SLAMBench [27],
a widely available benchmark that implements the Kinect
Fusion (KF) application [28], provides implementations for
all the aforementioned programming languages. A common
drawback of such implementations is the lack of portability
since the applications have to be recompiled and optimized
for each underlying hardware platform. Building and opti-
mizing CV applications on top of a managed runtime system
such as the Java Virtual Machine (JVM) would enable sin-
gle implementations to run across multiple devices such as
desktop machines or Android powered devices.

In the context of this paper we describe our experiences
related to achieving a high-performing Java implementation
of the Kinect Fusion application. After implementing and
validating SLAMBench in Java, we performed an initial evalu-
ation to identify performance bottlenecks. Consequently, we
revised two optimization techniques leveraging the underly-
ing heterogeneous hardware resources in order to meet the
QoS target of the CV application. The developed optimiza-
tions follow two approaches: 1) a general purpose OpenCL
accelerator, and 2) an application speci�c FPGA accelerator.

In detail, the paper makes the following contributions:
• Describes the implementation of a complex CV appli-

cation in Java.
• Describes our work on providing a high-performing

research JVM (Maxine VM) on low-power ARM ar-
chitectures.
• Introduces two novel hardware acceleration tech-

niques via the JVM which leverage FPGAs and GPG-
PUs transparently.
• Showcases that with the proposed acceleration tech-

niques we are able to meet the QoS target of 30 FPS
of a common CV application achieving up to 47X
speedup compared to the original C++ implementa-
tion.

74

10.1145/3050748.3050764

VEE’17, Xi’an, China C. Kotselidis et al.

The paper is organized as follows: Section 2 presents the
Computer Vision application that forms the use case in this
paper. Section 3 explains the novel acceleration techniques
developed along with the experimentation infrastructure.
Finally, Section 4 presents the performance evaluations while
Sections 5 and 6 present the related work and the concluding
remarks, respectively.

Figure 1. RGB-D camera combines RGB with Depth infor-
mation (top left and middle). The tracking (left) results in
the 3D reconstruction of the scene (right).

2 Kinect Fusion
Kinect Fusion (KF) is a Computer Vision application which re-
constructs a three-dimensional representation from a stream
of depth images produced by a RGB-D camera (Figure 1),
such as the Microsoft Kinect. KF is described in [28] and
a number of open-source implementation are provided by
SLAMBench [27].

KF is a challenging application because in order to achieve
its QoS target it needs to operate at the frame rate of the
camera, which is 30 frames per second (FPS). Dropping be-
low this frame rate means that pose changes, in both the
camera and the subject, have the potential to become greater
and, subsequently, �nding correspondences between frames
becomes increasingly di�cult. KF is also interesting from
an implementation perspective since there is an abundance
of parallelism which can be exploited to improve its perfor-
mance. Implementation-wise, some of the kernels are very
large. For example, raycast is close to 250 lines of code (LOC)
and expands to 1000 LOC in the OpenCL implementation
while its performance is constrained by complex data depen-
dencies.

Track Host Solve Device

Track Host Solve Device

Track Host Solve Device

4 Iterations
 80x60

5 Iterations
160x120

10 Iterations
320x240

Preprocessing

Tracking

Integration

Raycast

Rendering

Acquisition

Input

(a) (b)

Figure 2. Kinect Fusion Pipeline stages.

Kernel Stage Invocations

mm2meters preprocess 1
bilateral �lter preprocess 1
half sample track 3

depth to vertex track 3
vertex to normal track 3

track track 1 - 19
reduce track 1 - 19

integrate integrate 0 - 1
raycast raycast 0 - 1

render depth rendering 0 - 1
render track rendering 0 - 1

render volume rendering 0 - 1

Total - 18 - 54

Table 1. List of KF kernels.

2.1 Processing Pipeline
KF uses a stream of depth images from a Kinect camera as
input to a six-stage processing pipeline (Figure 2a):

1. acquisition obtains the next RGB-D frame - either
from a camera or from a �le.

2. pre-processing is responsible for cleaning and inter-
preting the raw data by: applying a bilateral �lter to
remove anomalous values, rescaling the input data to
represent distances in millimeters and, �nally, build-
ing a pyramid of vertex and normal maps using three
di�erent image resolutions.

3. tracking estimates the di�erence in camera pose be-
tween frames. This is achieved by matching the in-
coming data to an internal model of the scene using a
technique called Iterative Closest Point (ICP) [6, 39].

4. integrate fuses the current frame into the internal
model, if the tracking error is less than a predeter-
mined threshold.

5. raycast constructs a new reference point cloud from
the internal representation of the scene.

6. rendering uses the same raycasting to produce a
visualization of the 3D scene.

Each stage of the KF pipeline, as implemented in SLAM-
Bench, is composed of a series of kernels. The breakdown of
pipeline stages and invocation counts per kernel are shown
in Table 1. We can see that a single frame of RGB-D data
will require the execution of 18 to 54 kernels; in the best
and worst case scenarios respectively. The variation is due
to the performance of the tracking algorithm. If it is able to
estimate the new camera pose quickly then fewer kernels
will be executed. Therefore, to achieve a frame rate of 30 FPS,
the application must sustain the execution of between 540
and 1620 kernels every second.

2.2 Tracking Algorithm
The tracking stage of the KF algorithm, depicted in Figure 2b,
is the most complex in the pipeline and it uses an Iterative

75

Heterogeneous Managed Runtime Systems: A Computer Vision Case Study VEE’17, Xi’an, China

Closest Point (ICP) algorithm to estimate the di�erence in
camera pose between two point clouds. The algorithm has
two stages: 1) it �nds correspondences between the incoming
frame and its internal model - returning the error associated
with each correspondence and, 2) it uses a least-squares
approach to identify a new camera pose which minimizes
this error. Finally, the algorithm iterates until the error is
below a pre-con�gured threshold.

The complexities of implementing the tracking stage are
compounded by using an iterative multi-scale ICP algorithm.
In cases where KF is able to use a hardware accelerator, such
as a GPGPU, the tracking algorithm is split so that the cor-
respondences are found on the accelerator and the error
minimization on the host. Consequently, in this situation,
each iteration of the algorithm is required to transfer data be-
tween two memory spaces on the host and device (illustrated
as diamonds in Figure 2b). The tracking kernel performs reg-
ular data transfers of 2.34 MB (320x240), 600 KB (160x120),
and 150 KB (80x60) to the host. On the contrary, the host
needs to transfer the new pose to the device after each iter-
ation. Since each pose is represented by a 4 × 4 matrix, 64
bytes are required.

2.3 Measuring Performance and Accuracy
A challenge when comparing di�erent implementations of
KF, and CV algorithms in general, is that performance and
accuracy measures are subjective. Normally, this is due to
the real measure of the algorithmic quality being the user
experience: does the user notice slow performance and is
it accurate enough for their needs? Nevertheless, we must
ensure that each implementation of KF does the same work
and produces the same answer. Therefore, out of a number of
KF implementations we have selected the ones provided by
SLAMBench since they provide ready-made infrastructure
to measure the performance and accuracy, enabling reliable
comparisons between di�erent implementations.

The accuracy of each reconstruction is determined by
comparing the estimated trajectory of the camera against a
provided ground truth, and is reported as an absolute tra-
jectory error (ATE). The ground truths are provided by the
synthetically generated ICL-NUIM dataset [18]. Finally, the
performance is measured as the average frame rate achieved
when processing the entire dataset.

2.4 Portability Issues
SLAMBench provides implementations in C++, OpenMP,
CUDA, and OpenCL, enabling various performance points
depending on the hardware unit executed. However, to achieve
portability, current SLAMBench implementations, at the very
least, have to be re-compiled on every platform; something
that is not always possible e.g. OpenMP on OSX.

Another issue is that users may have to re-write key ker-
nels for each target device. For example, reduction-style
kernels are implemented to exploit a speci�c internal orga-
nization of a device. This means that the code will have to

be re-written if the organization changes, or more subtly if
some physical characteristics of the device changes, such as
the amount of local memory or the maximum number of
work items in a work group. This is a problem which a�ects
all languages since developers may need to change tile sizes
and thread scheduling for each device.

Programming languages implemented on top of managed
runtime systems, such as the JVM, allow application execu-
tion regardless of operating system or hardware architec-
ture. However, such implementations may perform slower
especially in scenarios where heterogeneous acceleration is
involved. In the remainder of the paper we discuss a number
of techniques that can be used to accelerate the performance
of our portable Java Kinect Fusion implementation in order
to achieve our desired QoS level.

2.5 Java Implementation
Our Java reference implementation is derived from the open-
source C++ version provided by SLAMBench. During port-
ing, we ensured that the Java implementation produces bit-
exact results when compared to the C++ one1. This is highly
important, and challenging, since Java does not support un-
signed integers. Therefore, we had to modify the code to use
signed representations and maintain correctness. Although
all kernels produce near identical results during unit-testing,
each implementation can produce slightly di�ering results
when combined together due to the nature of �oating-point
arithmetic.

We have developed the Java implementation with minimal
dependencies on third-party code and we do not use any
form of Foreign Function Interface (FFI) or native libraries.
Our only dependency is on the EJML library [15] for its im-
plementation of SVD. During a preliminary performance
analysis, we discovered that the C++ implementation is 3.4X
faster than Java. Despite outperforming Java, the C++ imple-
mentation barely manages to achieve 4 FPS: which is much
lower than the expected QoS target of 30 FPS. To achieve
such high levels of performance, we have two options: 1)
make better use of the available hardware resources, and/or
2) use a hardware accelerator.

3 Heterogeneous Managed Runtime
Systems

One of the key aspects of this work is to demonstrate that
computationally intensive applications can be created in a
hardware agnostic manner; they can be written once and
run everywhere while achieving their performance targets.
Therefore, we explore application performance over a wide
range of devices ranging from desktop to embedded. Regard-
ing low-power architectures, we experiment with both an
industrial-strength and a research virtual machine; OpenJDK
JVM [30] and Maxine VM [36] respectively.

1Even if this failed, it came within 5 Units of Last Place (ULP).

76

VEE’17, Xi’an, China C. Kotselidis et al.

ARMv7x86-64 GPUs FPGAs

H
ar

dw
ar

e

Maxine VM

T1X

OpenCL
Heterogeneous

Accelerator

Java7, Java8, C++, OpenMP KFusion Implementations
(derived fromSLAMBench)

Native
(C++/OpenMP)

A
pp

lic
at

io
ns

R
un

tim
e

La
ye

r OpenJDK
C1X/Graal

Client

Memory
Manager (GC)

Memory
Manager (GC)

MAST
FPGA Accelerator

Framework

Figure 3. Architecture overview.

After achieving a baseline, yet slow, Java implementation
of the KF application, our next objective was to optimize
it by accelerating its kernels using a range of hardware ac-
celerators. We followed two approaches for acceleration: 1)
general purpose acceleration where we provide a framework
to re-compile the application for a target accelerator, such
as a GPGPU and, 2) an application speci�c approach where
key kernels are o�-loaded onto an FPGA. Since no available
production-quality JVM supports either GPGPU2 or FPGA
execution, out-of-the-box, we implemented: 1) an OpenCL
accelerator for GPGPU o�oading, and 2) an FPGA compati-
ble library for dynamic o�oading through the JVM.

The following subsections describe in detail the subsys-
tems of the experimental infrastructure depicted in Figure
3: Section 3.1 presents the MREs while Sections 3.2 and 3.3
discuss the OpenCL and FPGA components respectively.

3.1 Maxine Research Virtual Machine
One of our key objectives is to enable JVM research on low-
power ARM architectures. Therefore, besides using the pro-
duction quality OpenJDK JVM we opted for a research JVM
also. To overcome the lack of research-based JVMs on ARM
systems, we have ported Maxine VM onto ARMv7 32 bit
architectures3.

The Maxine VM, a meta-circular Java-in-Java VM devel-
oped by Oracle Labs, has been adopted and augmented in
the context of this paper. Since its last release from Oracle,
we have enhanced it both in performance and functional-
ity. In detail, the latest release of Maxine from Oracle had
the following three compilers: 1) T1X: a fast template-based
interpreter (stable), 2) C1X: An optimizing SSA-based JIT
compiler (stable), and 3) Graal: an aggressively optimizing
SSA-based JIT compiler. Furthermore, the Maxine VM could
execute only on x86-64 bit architectures resulting in many
of its part to be tightly coupled for 64 bit architectures.

Since our main objective is to provide to the community
a state-of-the-art research JVM for both x86 and low-power
ARM architectures we enhanced Maxine VM as follows:

2IBM’s J9 JVM supports GPGPU acceleration but does not provide enough
functionality to run SLAMBench.
3An AArch 64 bit port of Maxine VM is also underway. Furthermore, both
ports will be open-sourced.

1. T1X: Added pro�ling instrumentation enabling more
aggressive pro�le-guided optimizations applicable to
all underlying architectures.

2. T1X: Compiler ports to ARMv7 and Aarch64 enabling
experimentation on low-power 32bit and 64bit archi-
tectures.

3. C1X: Compiler port to ARMv7 enabling experimenta-
tion on low-power ARM 32bit architectures.

4. Graal: Stability and performance improvements.
5. Maxine: Complete ARMv7 support, stability, and per-

formance enhancements.
Furthermore, the work on providing an ARM-compatible
research JVM entailed a number of modi�cations to the orig-
inal Maxine VM implementations such as: 1) addition of an
extra word in object headers in order to store hash codes, 2) a
complete re-design of the locking schemes to accommodate
for both thin and thick locks, and 3) augmentation of the
register allocator to account for dual-register allocation for
long and double types.

To provide a baseline performance comparison between
Maxine and OpenJDK JVM we tested both JVMs on x86 and
ARMv7 architectures. Figures 4 and 5 illustrate their perfor-
mance di�erences on Dacapo9.12-bach [7] and SpecJVM2008
[33] respectively. Unfortunately, we could not compare against
JikesRVM [1] since it can not run the Dacapo9.12-bach bench-
marks on x86-64.

Regarding x86-64, as illustrated in Figure 4, since Oracle’s
last release (Maxine-Graal-rev.20290 Original), performance
has been increased by 64%4 (Maxine-Graal-rev.20381 Cur-
rent). Although Maxine’s performance is half of the of in-
dustrial strength OpenJDK, which uses the more performant
C2 and Graal (rev. 21075) compilers, our goal is to drive up
performance until Maxine is on par with OpenJDK. Primar-
ily, this will be achieved by enabling more aggressive Graal
optimizations in Maxine such as escape analysis [34] and
other compiler intrinsics.

Regarding ARMv7, as depicted in Figure 55 the perfor-
mance of Maxine VM falls between the performance of
OpenJDK-Zero and OpenJDK-1.7.0-(Client, Server). Maxine
VM outperforms OpenJDK-Zero by 12x on average across
SpecJVM2008, while it is on average around 2.3x and 3.3x
slower than the OpenJDK-1.7.0 client and server compilers
respectively.

3.2 General Purpose OpenCL Acceleration
To improve the productivity of the developers, targeting
heterogeneous hardware, we designed and developed an
OpenCL accelerator. The key di�erence between the pro-
posed OpenCL Accelerator and existing programming lan-
guages and frameworks is its dynamism; as such, developers

4Intel(R) Core(TM) i7-4770@3.4GHz, 16GB RAM, Ubuntu 3.13.0-48-generic,
16 iterations, 12GB heap.
5Samsung Chromebook, Exynos 5 Dual@1.7GHz, 2GB RAM, Ubuntu 3.8.11,
2GB heap. Serial was excluded from the evaluation.

77

Heterogeneous Managed Runtime Systems: A Computer Vision Case Study VEE’17, Xi’an, China

57.08

75.98
81.63

36.36

86.30

68.96

90.49

35.13
26.13

99.7

44.8

72.64

37.53

50.34

0
10
20
30
40
50
60
70
80
90
100

Hotspot-C2-1.8.0.25 Hotspot-Graal-21075 (Original) Maxine-Graal-20290 (Original) Maxine-Graal-20381 (Current)

Figure 4. DaCapo-9.12-bach benchmarks (higher is better) normalized to Hotspot-C2-1.8.0.25, x86-64bit.

12
20

8

29
17

5
14

8

25

6

27
20 18

57
44

13

31
22

38
28

40

20
34

65
76

24

50

31

49 47

0

20

40

60

80

geomean startup compiler compress crypto derby mpegaudio scimark sunflow xml

MaxineVM-ARMv7 OpenJDK_1.7.0_40-Client OpenJDK_1.7.0_40-Server

Figure 5. SpecJVM2008 benchmarks (higher is better) normalized to OpenJDK-Zero-IcedTea6_1.13.11, ARMv7-32bit.

do not need to make a priori decisions about their hard-
ware targets. To achieve this, our framework exploits the
new JVMCI (Java Virtual Machine Compiler Interface) [22]
capabilities to Just-In-Time (JIT) compile Java bytecode to
execute on OpenCL compatible devices.

As depicted in Figure 6, our API provides developers with
a task-based programming model. A task can be thought
of as being analogous to a single OpenCL kernel execution.
This means that a task must encapsulate the code it needs to
execute, the data it should operate on, and some meta-data.
The meta-data can contain information such as the device
it should execute on or pro�ling information. The mapping
between tasks and devices is done at a task-level granularity;
each task is capable of being executed on a di�erent piece
of hardware. These mappings can be provided either by the
developer or by a runtime component.

Instead of focusing on scheduling individual tasks, we
allow developers to combine multiple tasks together to form
a larger schedulable unit of work (called a task-graph). This
approach has a number of bene�ts: �rstly, it provides a clean
separation between the code which co-ordinates tasks exe-
cution and the code which performs the actual computation;
and secondly, it allows the runtime system to exploit a wider
range of runtime optimizations. For instance, the task-graph
provides the runtime system with enough information to
determine the data dependencies between tasks. By using
this knowledge, the runtime system is able to exploit any
available task parallelism by overlapping the execution of
task execution and data movement. It also provides the run-
time system with the ability to eliminate any unnecessary
data transfers that would occur because of read-after-write
data dependencies between tasks.

To increase developer productivity, we make o�oading
computation as transparent as possible. This is achieved via

Task Graph

Methods

OpenCL/Java API

preprocessingGraph = new TaskGraph()
 .streamIn(depthImageInput)
 .add(ImagingOps::mm2metersKernel,
 scaledDepthImage,
depthImageInput, scalingFactor)
 .add(ImagingOps::bilateralFilter,
 pyramidDepths[0],
scaledDepthImage,
 gaussian, eDelta, radius)
 .mapAllTo(deviceMapping);

Optimized
Graph

- Users create Task Graphs
with our OpenCL API.

Graph Optimizer

- The compiler expands
graphs to include data
movement.
- Graph is optimized to
remove redundant data
transfers.

Runtime

Code Cache Memory

Task Queue

Device

Device Device Device…

- Runtime schedules tasks on devices.

Figure 6. OpenCL Accelerator outline.

Figure 7. MAST overview.

the runtime system which is able to automatically schedule
data transfers between devices and handle the asynchro-
nous execution of tasks. Moreover, the JIT compiler provides
support for user-guided parallelization. As a result, the de-
velopers are able to rapidly develop portable heterogeneous
applications which can exploit any OpenCL compatible de-
vice in the system.

3.3 Application Speci�c FPGA Acceleration
As depicted in Figure 3, we target a variety of hardware
platforms and therefore signi�cant e�ort is being placed
in providing the appropriate support for the compilers and
runtimes of choice. Besides targeting conventional CPU/GPU

78

VEE’17, Xi’an, China C. Kotselidis et al.

systems, it is also possible to target FPGA systems such as
the Xilinx Zynq ARM/FPGA System on Chip (SoC). In order
to e�ciently program FPGAs using high level programming
languages, we developed MAST: a Modular Acceleration and
Simulation Technology (Figure 7).

MAST is a C++ software library, combined with Blue-
spec [3] hardware IP library, and tools designed to allow
the rapid development of �exible hardware accelerators on
Xilinx Zynq SoCs. MAST allows easy integration of accel-
erators into software systems, without the need to worry
about drivers. This allows the decoupling of hardware and
software engineers, allowing them to concentrate on hard-
ware and user-space software development respectively. For
systems exclusively containing MAST components, Xilinx
Vivado scripting allows for the automatic implementation
of systems from Verilog netlist to bitstream without user
intervention. This allows software engineers to deploy new
hardware con�gurations without the requirement to learn
complex EDA tools and device speci�c features. The software
library implements the SimCtrl controller: a module which
allows the discovery of MAST compliant IP on the FPGA at
run time. Any IP block can then be locked, at a thread or
process level, or reserved by a process for future locking;
protection is provided against IP being locked by terminated
tasks. Users can request speci�c IP from the SimCtrl and it
will, assuming availability, return a SimObject which allows
them to manipulate the IP block using simple register access.
MAST supports IP master transfers allowing memory access
from the processor system memory. This typically operates
via a coherency port, ACP in the case of Zynq 7000, allowing
arbitrary pages of the parent processes to be read or writ-
ten to from hardware. In this case, the hardware accelerator
acts as a “virtual thread" being set o� and synchronized at a
later date whilst the processor continues operating on other
tasks. The availability of both master and slave interfaces
on IP allows for simple, �exible, and high performance links
between the MAST software and IP libraries. Usually, for a
speci�c IP block, the user will derive a new Class from the
SimObject, allowing more complex operations at a higher
level of abstraction from the hardware. Such abstraction is
typically achieved with a few lines of simple code.

The hardware IP library consists of a set of parameterized
IP blocks for performing not only basic tasks but also com-
plex high level libraries. The low level blocks handle the IP /
software interface, taking care of FPGA bus protocols, device
discovery, locking and high speed memory interfaces. The
higher level modules currently include memory system mod-
els and processor timing models for gathering statistics from
either static execution traces or dynamically instrumented
applications.

4 Evaluation
The following subsections describe the acceleration and op-
timization techniques applied to Kinect Fusion (KF) along

Opt 1: GPU Acceleration 2: FPGA Acceleration
Module OpenJDK, Graal OpenJDK, Maxine

Hardware

CPU Intel Xeon E5-2620 @ 2GHz Xilinx Zynq 706 board
ARMv7 Cortex A9

Cores 12 (24 Threads) 2
L1 32KB per core, 8-way 32KB per core
L2 256KB per core, 8-way 512KB per core
L3 15MB, 20-way -

RAM 32GB 1GB

GPU NVIDIA Tesla K20m -
@ 0.705GHz, OpenCL 1.2 -

Ext. OpenCL Accel. MAST FPGA

Software

JVM OpenJDK, Graal Maxine ARMv7
- OpenJDK_1.7.0_40

OS CentOS 6.8 (Kernel 2.6.32) Linux 3.12.0-xilinx-dirty

Table 2. Hardware and Software con�gurations.

C++ - 2.72 FPS

Java - 0.81 FPS

Java/OpenCL

 - 33.13 FPS

0

10

20

30

0 500 1000

Frame Number

F
ra

m
e

s
 P

e
r

S
e

c
o

n
d

Figure 8. FPS of Java/OpenCL versus baseline Java and C++.

with the experimental results. The hardware and software
con�gurations for each optimization are shown in Table 2.

4.1 GPGPU Acceleration
GPGPU acceleration has been applied to KF through our
OpenCL accelerator (Section 3.2). All, but one6, kernels of KF
have been dynamically compiled and o�oaded for GPGPU
execution through OpenCL code emission. Figures 8 and 9,
illustrate the performance and speedup of the accelerated
KF version respectively.

As depicted in Figure 8, the original validated version of
Kinect Fusion can not meet the QoS target of real-time Com-
puter Vision applications (0.71 FPS on average). Both the
serial versions of Java and C++ perform under 3 FPS with
the C++ version being 3.4x faster than Java. By accelerating
KF through GPGPU execution we manage to achieve a con-
stant rate of over 30 FPS (33.13 FPS) across all frames (882)
from the ICL-NUIM dataset [17] (Room 2 con�guration). In
order to achieve 30 FPS, all kernels have been accelerated
by up to 821.20x with an average of 47.84x across the whole
application, as depicted in Figure 9. By utilizing our OpenCL

6Acquisition can not be accelerated because the input is obtained serially.

79

Heterogeneous Managed Runtime Systems: A Computer Vision Case Study VEE’17, Xi’an, China

10

1000

Acq. Pre. Tra. Int. Ray. Rend. Total

Pipeline Stage

S
p

e
e

d
u

p
 O

v
e

r
J
a

v
a

 (
lo

g
1

0
)

C++ Java/OpenCL

Figure 9. Java/OpenCL and C++ speedup over serial Java
per KF stage.

acceleration infrastructure, we manage to dynamically ac-
celerate a simple un-optimized serial Java version of a KF
algorithm meeting its QoS requirements in a transparent to
the developer manner.

4.2 FPGA Acceleration
FPGA acceleration has been applied to KF through the MAST
acceleration functionality of our platform (Section 3.3). In our
initial investigation into FPGA acceleration we selected the
preprocessing stage for acceleration. This stage contains
two computational kernels that: i) scale the depth camera
image from mm to meters, and ii) apply a bilateral �lter to
produce a �ltered scaled image. In particular, a �lter is ap-
plied to the scaled image in order to reduce the e�ects of
noise in depth camera measurements.

In order to improve the execution time in Java, we merged
the two routines into a single routine reducing the streaming
of data to and from the FPGA device. The o�oading to the
FPGA is accomplished by using the Java Native Interface
(JNI) mechanism to interface with our MAST module (Sec-
tion 3.3). The JNI stub extracts C-arrays of �oating point
values from the Java environment that represent the current
input raw depth image from the camera, and the current
output scaled �ltered image. The JNI stub, in turn, converts
the current raw depth image into an array of short integers
which is memory allocated (through malloc) on the �rst
execution of the JNI stub. The FPGA hardware environment
is also initialized during �rst execution, and consequently
the hardware performs the merged scaling and �ltering op-
eration. As a result, subsequent executions only need to
perform a call to extract C-arrays and to, �nally, release the
output scaled and �ltered image array back to the Java en-
vironment. The computational kernels selected for FPGA
execution have been developed in Bluespec System Verilog
[3] and synthesized on the Xilinx Zynq 706 board.

As depicted in Table 3, FPGA acceleration of the selected
kernels improves their performance by 43x and 22x on Max-
ineVM and OpenJDK respectively. The di�erence in both
execution times and speedups from both VMs stem from the

VM No FPGA With FPGA SpeedupAcceleration Acceleration

Maxine VM 2.20 0.05 43x
OpenJDK 0.66 0.03 22x

Table 3. Performance and speedup of KF’s pre-processing
stage with and without FPGA acceleration (mean execution
time, in seconds, over 78 frames).
fact that OpenJDK produces more optimal code than Max-
ineVM (Section 3.1). Unfortunately, we could not combine
both techniques to provide an end-to-end evaluation having
simultaneous acceleration on FPGAs and GPGPUs because
we could not get access to a system with both GPGPU and
FPGA accelerators.

5 Related Work
Several related works proposed the exploitation of heteroge-
neous hardware from dynamic languages. The majority of
them target GPGPUs, although attempts have also been for
FPGAs, vector units, and multi-core processors. Amongst the
targeted programming languages are Java [2, 4, 12, 14, 16, 19,
23, 25, 31, 37, 38], Python [5, 9, 24, 32], Haskell [11, 20, 26],
Scala [10, 29], MATLAB [5, 13], and JavaScript [21].

To the best of our knowledge, this paper describes the
most complex application to be written entirely in Java and
accelerated by GPGPUs to date. Our OpenCL accelerator
di�ers from prior work by: 1) not using a super-set of the
Java language [4, 19], 2) not using ahead-of-time compilation
[14, 31], 3) not requiring developers to write heterogeneous
code in another language [23], and 4) not requiring manual
parallelization of kernels [2].

6 Conclusions and Future Work
In this paper, we showcased that it is possible to use a high-
level language such as Java in order to implement complex
Computer Vision applications. We extended our research to
both industrial-strength and research Java Virtual Machines
along with desktop and embedded systems. Also, we man-
aged to accelerate the Kinect Fusion application by up to 47x
achieving over 30 FPS with the use of GPGPUs and FPGAs.

Our next steps are to unify our OpenCL accelerator and
the MAST technology in order to transparently o�oad on
GPGPUs and FPGAs under the same executions. Finally,
recent hardware such as Intel’s Xeon and FPGA systems will
enable us to unify both acceleration domains to provide Java
a high-performing out-of-the-box acceleration suite.

Acknowledgments
This work is partially supported by EPSRC grants Anyscale
EP/L000725/1, PAMELA EP/K008730/1, DOME EP/J016330/1,
and EU Horizon 2020 ACTiCLOUD 732366 grant. Rodchenko
is funded by a Microsoft Research PhD Scholarship, and Lu-
ján is funded by a Royal Society University Research Fellow-
ship.

80

VEE’17, Xi’an, China C. Kotselidis et al.

References
[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D.

Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber,
V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano,
J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley.
2000. The JalapeñO Virtual Machine. IBM Systems Journal (2000).

[2] AMD-Aparapi. 2017. http://developer.amd.com/tools-and-
sdks/heterogeneous-computing/aparapi/. (Feb. 2017).

[3] Arvind. 2003. Bluespec: A Language for Hardware Design, Simulation,
Synthesis and Veri�cation Invited Talk. In Proceedings of the First ACM
and IEEE International Conference on Formal Methods and Models for
Co-Design (MEMOCODE ’03). IEEE Computer Society, Washington,
DC, USA, 249–. h�p://dl.acm.org/citation.cfm?id=823453.823860

[4] Joshua Auerbach, David F. Bacon, Perry Cheng, and Rodric Rabbah.
2010. Lime: A Java-compatible and Synthesizable Language for Het-
erogeneous Architectures. In Proceedings of the ACM International
Conference on Object Oriented Programming Systems Languages and
Applications (OOPSLA ’10). ACM, New York, NY, USA, 89–108. DOI:
h�p://dx.doi.org/10.1145/1869459.1869469

[5] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin,
Razvan Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-
Farley, and Yoshua Bengio. 2010. Theano: a CPU and GPU Math
Expression Compiler. In Proceedings of the Python for Scienti�c Com-
puting Conference (SciPy).

[6] P. J. Besl and H. D. McKay. 1992. A method for registration of 3-D
shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence
14, 2 (Feb 1992), 239–256.

[7] S. M. Blackburn, R. Garner, C. Ho�man, A. M. Khan, K. S. McKinley, R.
Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A.
Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. 2006. The
DaCapo Benchmarks: Java Benchmarking Development and Analysis.
InOOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference
on Object-Oriented Programing, Systems, Languages, and Applications.
ACM Press.

[8] J. Butzke, K. Daniilidis, A. Kushleyev, D. D. Lee, M. Likhachev, C.
Phillips, and M. Phillips. 2012. The University of Pennsylvania MAGIC
2010 multi-robot unmanned vehicle system. Journal of Field Robotics
29, 5 (2012), 745–761.

[9] Bryan Catanzaro, Michael Garland, and Kurt Keutzer. 2011. Copper-
head: Compiling an Embedded Data Parallel Language. In Proceed-
ings of the 16th ACM Symposium on Principles and Practice of Parallel
Programming (PPoPP ’11). ACM, New York, NY, USA, 47–56. DOI:
h�p://dx.doi.org/10.1145/1941553.1941562

[10] Olivier Cha�k. 2017. ScalaCL: Faster Scala: optimizing compiler plugin
+ GPU-based collections (OpenCL). (Feb. 2017). Retrieved March 11,
2017 from h�p://code.google.com/p/scalacl

[11] Manuel M.T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. Mc-
Donell, and Vinod Grover. 2011. Accelerating Haskell Array Codes
with Multicore GPUs. In Proceedings of the Sixth Workshop on Declara-
tive Aspects of Multicore Programming (DAMP ’11). ACM, New York,
NY, USA, 3–14. DOI:h�p://dx.doi.org/10.1145/1926354.1926358

[12] James Clarkson, Christos Kotselidis, Gavin Brown, and Mikel Luján.
2017. Boosting Java Performance using GPGPUs. In Proceedings of the
30th International Conference on Architecture of Computing Systems
(ARCS ’17).

[13] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. 2011.
Torch7: A Matlab-like Environment for Machine Learning. In BigLearn,
NIPS Workshop.

[14] Georg Dotzler, Ronald Veldema, and Michael Klemm. 2010. JCudaMP.
In Proceedings of the 3rd International Workshop on Multicore Software
Engineering. DOI:h�p://dx.doi.org/10.1145/1808954.1808959

[15] EJML. 2017. (Feb. 2017). Retrieved March 11, 2017 from h�p://ejml.org

[16] Juan José Fumero, Michel Steuwer, and Christophe Dubach. 2014. A
Composable Array Function Interface for Heterogeneous Computing
in Java. In Proceedings of ACM SIGPLAN International Workshop on Li-
braries, Languages, and Compilers for Array Programming (ARRAY’14).
ACM, New York, NY, USA, 44:44–44:49. DOI:h�p://dx.doi.org/10.1145/
2627373.2627381

[17] A. Handa, T. Whelan, J.B. McDonald, and A.J. Davison. 2014. A Bench-
mark for RGB-D Visual Odometry, 3D Reconstruction and SLAM. In
ICRA.

[18] A. Handa, T. Whelan, J.B. McDonald, and A.J. Davison. 2014. A Bench-
mark for RGB-D Visual Odometry, 3D Reconstruction and SLAM. In
IEEE Intl. Conf. on Robotics and Automation, ICRA. Hong Kong, China.

[19] Akihiro Hayashi, Max Grossman, Jisheng Zhao, Jun Shirako, and Vivek
Sarkar. 2013. Accelerating Habanero-Java Programs with OpenCL Gen-
eration. In Proceedings of the 2013 International Conference on Principles
and Practices of Programming on the Java Platform: Virtual Machines,
Languages, and Tools. DOI:h�p://dx.doi.org/10.1145/2500828.2500840

[20] Sylvain Henry. 2013. ViperVM: A Runtime System for Parallel Func-
tional High-performance Computing on Heterogeneous Architectures.
In Proceedings of the 2Nd ACM SIGPLAN Workshop on Functional High-
performance Computing (FHPC ’13). ACM, New York, NY, USA, 3–12.
DOI:h�p://dx.doi.org/10.1145/2502323.2502329

[21] Stephan Herhut, Richard L. Hudson, Tatiana Shpeisman, and Jaswanth
Sreeram. 2013. River Trail: A Path to Parallelism in JavaScript. In
Proceedings of the 2013 ACM SIGPLAN International Conference on
Object Oriented Programming Systems Languages & Applications
(OOPSLA ’13). ACM, New York, NY, USA, 729–744. DOI:h�p://dx.doi.
org/10.1145/2509136.2509516

[22] JEP 243: Java-Level JVM Compiler Interface. 2017.
http://openjdk.java.net/jeps/243. (Feb. 2017).

[23] Java bindings for OpenCL. 2017. (Feb. 2017). Retrieved March 11,
2017 from h�p://www.jocl.org/

[24] Andreas Klöckner, Nicolas Pinto, Yunsup Lee, Bryan Catanzaro, Paul
Ivanov, and Ahmed Fasih. 2012. PyCUDA and PyOpenCL: A Scripting-
based Approach to GPU Run-time Code Generation. Parallel Comput.
38, 3 (March 2012), 157–174.

[25] Christos Kotselidis, Andrey Rodchenko, Colin Barrett, Andy Nis-
bet, John Mawer, Will Toms, James Clarksonand Cosmin Gorgovan,
Amanieu d’Antras, Yaman Cakmakci, Thanos Stratikopoulos, Sebatian
Werner, Jim Garside, Javier Navaridas, Antoniu Pop, John Goodacre,
, and Mikel Luján. 2016. Project Beehive: A Hardware/Software Co-
designed Stack for Runtime and Architectural Research. In Proceedings
of the 9th International Workshop on Programmability and Architectures
for Heterogeneous Multicores (MULTIPROG ’16).

[26] Geo�rey Mainland and Greg Morrisett. 2010. Nikola: Embedding
Compiled GPU Functions in Haskell. In Proceedings of the Third ACM
Haskell Symposium on Haskell (Haskell ’10). ACM, New York, NY, USA,
67–78. DOI:h�p://dx.doi.org/10.1145/1863523.1863533

[27] Luigi Nardi, Bruno Bodin, M. Zeeshan Zia, John Mawer, Andy Nisbet,
Paul H. J. Kelly, Andrew J. Davison, Mikel Luján, Michael F. P. O’Boyle,
Graham Riley, Nigel Topham, and Steve Furber. 2015.. Introducing
SLAMBench, a performance and accuracy benchmarking methodology
for SLAM. In ICRA.

[28] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David
Molyneaux, David Kim, Andrew J. Davison, Pushmeet Kohli, Jamie
Shotton, Steve Hodges, and Andrew Fitzgibbon. 2011. KinectFusion:
Real-time Dense Surface Mapping and Tracking. In Proceedings of
the 2011 10th IEEE International Symposium on Mixed and Augmented
Reality (ISMAR ’11). IEEE Computer Society, Washington, DC, USA,
127–136. DOI:h�p://dx.doi.org/10.1109/ISMAR.2011.6092378

[29] Nathaniel Nystrom, Derek White, and Kishen Das. 2011. Firepile: Run-
time Compilation for GPUs in Scala. In Proceedings of the 10th ACM
International Conference on Generative Programming and Component
Engineering (GPCE ’11). ACM, New York, NY, USA, 107–116. DOI:
h�p://dx.doi.org/10.1145/2047862.2047883

81

http://dl.acm.org/citation.cfm?id=823453.823860
http://dx.doi.org/10.1145/1869459.1869469
http://dx.doi.org/10.1145/1941553.1941562
http://code.google.com/p/scalacl
http://dx.doi.org/10.1145/1926354.1926358
http://dx.doi.org/10.1145/1808954.1808959
http://ejml.org
http://dx.doi.org/10.1145/2627373.2627381
http://dx.doi.org/10.1145/2627373.2627381
http://dx.doi.org/10.1145/2500828.2500840
http://dx.doi.org/10.1145/2502323.2502329
http://dx.doi.org/10.1145/2509136.2509516
http://dx.doi.org/10.1145/2509136.2509516
http://www.jocl.org/
http://dx.doi.org/10.1145/1863523.1863533
http://dx.doi.org/10.1109/ISMAR.2011.6092378
http://dx.doi.org/10.1145/2047862.2047883

Heterogeneous Managed Runtime Systems: A Computer Vision Case Study VEE’17, Xi’an, China

[30] OpenJDK. 2017. h�p://openjdk.java.net/. (Feb. 2017).
[31] P.C. Pratt-Szeliga, J.W. Fawcett, and R.D. Welch. 2012. Rootbeer: Seam-

lessly Using GPUs from Java. In Proceedings of 14th International IEEE
High Performance Computing and Communication Conference on Em-
bedded Software and Systems. DOI:h�p://dx.doi.org/10.1109/HPCC.
2012.57

[32] Alex Rubinsteyn, Eric Hielscher, Nathaniel Weinman, and Dennis
Shasha. 2012. Parakeet: A Just-in-time Parallel Accelerator for Python.
In Proceedings of the 4th USENIX Conference on Hot Topics in Parallelism
(HotPar’12). USENIX Association, Berkeley, CA, USA, 14–14.

[33] SpecJVM2008. 2017. h�ps://www.spec.org/jvm2008/. (Feb. 2017).
[34] Lukas Stadler, Thomas Würthinger, and Hanspeter Mössenböck. 2014.

Partial Escape Analysis and Scalar Replacement for Java. In Proceedings
of Annual IEEE/ACM International Symposium on Code Generation and
Optimization (CGO ’14). ACM, New York, NY, USA, 165:165–165:174.
DOI:h�p://dx.doi.org/10.1145/2544137.2544157

[35] Tango. 2017. (Feb. 2017). Retrieved March 11, 2017 from h�ps:
//get.google.com/tango/

[36] Christian Wimmer, Michael Haupt, Michael L. Van De Vanter, Mick
Jordan, Laurent Daynès, and Douglas Simon. 2013. Maxine: An Ap-
proachable Virtual Machine for, and in, Java. ACM Trans. Archit. Code
Optim. (January 2013).

[37] Yonghong Yan, Max Grossman, and Vivek Sarkar. 2009. JCUDA: A
Programmer-Friendly Interface for Accelerating Java Programs with
CUDA. In Euro-Par 2009 Parallel Processing, Henk Sips, Dick Epema,
and Hai-Xiang Lin (Eds.), Vol. 5704. Springer Berlin Heidelberg.

[38] Wojciech Zaremba, Yuan Lin, and Vinod Grover. 2012. JaBEE: Frame-
work for Object-oriented Java Bytecode Compilation and Execution on
Graphics Processor Units. In Proceedings of the 5th Annual Workshop
on General Purpose Processing with Graphics Processing Units (GPGPU-
5). ACM, New York, NY, USA, 74–83. DOI:h�p://dx.doi.org/10.1145/
2159430.2159439

[39] Zhengyou Zhang. 1994. Iterative Point Matching for Registration of
Free-form Curves and Surfaces. Int. J. Comput. Vision 13, 2 (Oct. 1994),
119–152.

82

http://openjdk.java.net/
http://dx.doi.org/10.1109/HPCC.2012.57
http://dx.doi.org/10.1109/HPCC.2012.57
https://www.spec.org/jvm2008/
http://dx.doi.org/10.1145/2544137.2544157
https://get.google.com/tango/
https://get.google.com/tango/
http://dx.doi.org/10.1145/2159430.2159439
http://dx.doi.org/10.1145/2159430.2159439

	Abstract
	1 Introduction
	2 Kinect Fusion
	2.1 Processing Pipeline
	2.2 Tracking Algorithm
	2.3 Measuring Performance and Accuracy
	2.4 Portability Issues
	2.5 Java Implementation

	3 Heterogeneous Managed Runtime Systems
	3.1 Maxine Research Virtual Machine
	3.2 General Purpose OpenCL Acceleration
	3.3 Application Specific FPGA Acceleration

	4 Evaluation
	4.1 GPGPU Acceleration
	4.2 FPGA Acceleration

	5 Related Work
	6 Conclusions and Future Work
	Acknowledgments
	References

