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1 Introduction

ACTICLOUDs vision is to develop a novel cl oupd ar chi

and sharenothing barriers and enable the holistic management ghysical resources both at the
local cloud site and the distributed levels, targeting drastically improved utilization and
scalability of resources. This will ultimately translate to:

a) Significant cost and performance improvements for Cloud ServiBeoviders (CSPSs)
b) Higher performance stability and lower pricing for cloud applications

¢) Enhanced flexibility and scalability of cloud resources for intensive database applications that
have until now faced tough challenges in covering their resource demands from existing cloud
offerings.

ACTICLOUDims to advance the business viability of alld deployment scenarios through
increased resource utilization and flexibility. This goal will be achieved through enhancement of

the various technologies in the architecture components, i.e. the Hypervisor, the cloud manager,
system libraries, language untimes and database systems with a novel and holistic set of
mechanisms and policies built on top of these negeneration computing system architectures

and therefore enabling distributed, hypelc o nver ge-dnybdbbhagé, -outdoodur c e
platforms to broaden the applicability of cloud technology across more markets through richer

and more cost effective application deployments.

1.1 Purpose of this Document

This document shows the valuable contribution of the MicroVisor Hypervisor RCTICLOUDL is
the report/documentation part of Deliverable D2.3, accompanying the updated software part of
the deliverable that contains software components (binaries and code) for the MicroVisor
Hypervisor platform and the components required for the integration witthe ACTiManager.

The MicroVisor platform, asACTICLOUD s  -scale Hypervisor layer, is a significant component

of the platform, providing all necessary mechanisms for virtualizing, managing and monitoring
compute, network and storage resource across treck, as well as the mechanisms to reconfigure
resources on demand, according to the ACTiManager distributed cloud resource manager policies
(discussed in Deliverable D2.1) to achieve increased resource efficiency acrosf\@ECLOUD
platform.

1.2 Relevance b ACTICLOUDbjectives, business scenarios and use cases

MicroVisor is one of the most important components in th&CTiCLOURrchitecture as it plays a
central role in the realization of ACTICLOUDs obj ecti ves towards next
[ACTi_[.1]. The MicroVisor platform, through the efficient Hypervisor and theOpenStack
integration, enhances stateof-the-art cloud management and provides efficient and effective
resource control approaches with mechanisms to:

0 drastically increase the resourceefficiency of cloud infrastructures in terms of
throughput per resource (Strategic Objective S01.1 on resource efficiency),

0 provide applications with better performance by lowering virtualization overheads
and strict performance guarantees through betteresource allocation and placement
(Strategic Objective S01.2 on performance stability).

This document is Public and was produced under the ACTICLOUD project Page9 of 87
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Additionally, as part of the ACTiICLOURrchitecture, the rackscale MicroVisor supports all the
necessary mechanisms for the deployment and management of segleand scaleout resources
offered by the underlying hardware (Strategic Objective S02.1 on scalability in resource
provisioning). Furthermore, interacting with the ACTiManager and the applications running in
Virtual Machines (VMs), it allows placement and schelihg of VM resources on the hardware
and responds to dynamic resource requests of the ACTiManager to address changes in
application demand (Strategic Objective S02.2 on elasticity in resource provisioning).

Finally, the efficient rackscale resource manageent support of the MicroVisor is an essential

component for the realization of ACTICLOUDS business scenarios [ ACTi _

summarized below:

0 Business scenario 1: Effective consolidation for increased revenue and reduced TCO,
0 Business scen@ 2: Workload prioritization,

0 Business scenario 3: Hosting larger workloads,

0 Business scenario 4: Collaboration with sibling cloud sites,

0 Business scenario 5: Enhanced dependability and availability.

1.3 Document Structure

This deliverable contains the follaing sections: Section 2 presents the MicroVisor platform,
including a general overview of virtualization, taditional Hypervisor architectures and the
motivation for building and using the MicroVisor within the ACTiCLOUroject. Section 2 also
discusseghe enhancements the MicroVisor provides, including the reliability, availability and
resiliency features that are integrated in the design of the platform, the performance counters
used for measuring the performance of the MicroVisor, as well as the NWsMareness and
VNUMA support implemented. All these features are directly relevant to t#eCTiCLOUProject
objectives and the integration with management components of the ACTiManager.

Section 3 analyses the resource control capabilities that are built ihe MicroVisor platform,

including the concept of resource groups, as well as their performance, availability and reliability
features. Section 3 also describes the process of configuring datastores and resource groups with
these features. In section 4, th integration of the MicroVisor into OpenStackis described,

including the redesigned architecture, implemented through an external API, along with
OpenStackdrivers that will be released as opesource. Section 4 also demonstrates the
integrated control that can be performed through theOpenStack s Hori zon Ul . Fi
Appendixes present some more detailed technical documentation, including the performance
counters implemented for the MicroVisor and a more detailed reference of the external REST API
developed for the integration with OpenStackPike drivers.
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2 The Rackscale MicroVisor architecture

The MicroVisor platform, asACTICLOUD s  -scale Hypervisor layer, is a significant component
of the platform, providing all necessary mechanisms for virtdiaing, managing and monitoring
compute, network and storage resource across the rack. In this section we provide a short
introduction to virtualization and an overview of the MicroVisor platform and its concepts.

2.1 Virtualization and t raditional Hypervisors

Virtualization of server hardware is a commonly used practice to provide scalable resource
management and it is essentially the enabling technology for cloud computing. There are many
benefits of virtualizing hardware resources, primarily to enablefficient resource sharing (CPU,
memory, NICs) across a multenant platform hosting a variety of Operating Systems (OSes). A
Hypervisor (HV), or virtual machine monitor (VMM) is a piece of software that creates, manages
and runs Virtual Machines (VMs), nguest domains. The Hypervisor presents the guest operating
systems with a virtual operating platform and manages the execution of the guest operating
systems. In addition to commonly deployed commercial Hypervisors such as VMware, there are
two dominant open-source Hypervisor platforms: Kernebased Virtual Machine (KVM)and the
Xen Hypervisof.

The Xen Hypervisor provides a true Type | Hypervisor, in contrast to the KVM Hypervisor
platform. That is to say that the Hypervisor layer runs directly on thdare-metal hardware,
managing guest OS instances directly above it. There is not any host operating system required
and in this way the Type | architecture is considered to be a minimal, high performance shim. In
parallel to the virtualized guest systemsunning on the Type | Hypervisor, traditional Xen
systems utilize a Control domain, known as DomO, which has privileged access to the Hypervisor
and is responsible for various tasks including; administering guest virtual machines, managing
resource allocaton for guests, providing drivers for directly attached hardware, and offering
network communication support. Guest Virtual Machines (DomUs) do not typically have direct
access to real hardware, and thus all guest domain network and storage communication is
managed through paravirtual device drivers hosted in the Control domain (Dom0), which in turn
handles safe resource access through multiplexing the physical hardware.

For every guest VM parairtualized (PV) device that is active, there is a correspondjrdriver in

the control domain that allocates resources and handles the communication ring over which
virtual 10 requests are transmitted. The control domain is then responsible for mapping those 10
requests onto the physical hardware devices behind thenBased on the Xen Hypervisor
platform, a guest OS can access a paravirtual 10 interface using the standard paravirtualized (PV)
driver such as Netfront for the Ethernet or Blkfront for the block storage device without any
actual underlying hardware knowledg. In contrast to PV, HVM guests are fully virtualized,
providing hardware support through their own unmodified drivers in the VM, while the
hypervisor provides full support for hardware devices, either native or through hardware
emulation.

1 Kernel Virtual Machinehttps://www.linux -kvm.org/
2 Xen Projecthttps://www.xenproject.org/
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2.2 Motivation for the MicroVisor Hypervisor

Considering Xen as a reference Type | hypervisor, we observe that its architecture for 10 (storage
and network requests), is quite centralized, where sending all the 10 requests from guest domains
through a central, core domain, Bm-0, itself becomes a bottleneck that affects performance.
Thus, the network and 1/O performance ithis architecture is limited, due to context switches to
the control domain (DomO) that handles the network packet switching for all VMs. In addition,
network function virtualization is increasingly being handled on commodity hardware as
individual worker VMs to provide enhanced network packet filtering, middlebox functionality
and packet forwarding. A new model is required to enhance and advance this amttiire by
making the packet forwarding and I/O layers as fast as possible, with slow path network
functions offloaded to separate processing engines (Software Defined Network and Network
Function Virtualisation model).

To address these limitations of a &ditional Type | hypervisor architecture (e.g. Xen), OnApp has
devel oped a new optimized hypervisor pl atform
implementation within the framework of ACTIiCLOURemoves the centralised Dom0O model of a

Type-1 hypervisor and instead passes the logic and control to a hightavel software tool that

can then communicate with the guests. The core idea behind this approach is to remove any
dependency on a local control domain (DomO) for virtual machine setup, booting and reseur
allocation, and instead move this generic functionality into the hypervisor layer itself.

To ensure that control logic is handled efficiently and quickly in the MicroVisor, raw Ethernet
frames are sent among guests, avoiding TCP/IP overhead, which hggaodound effect when
sending and receiving lowsize block requests across the network. One of the issues of moving to
a controller-less approach is that this means that the drivers, which were part of the control
domain (Dom0), now need to be moved to aher part of the Hypervisor. In the MicroVisor this

is implemented by either:

1. Creating driver domains that are lightweight MiniOS style domains that have access to
the drivers and the underlying hardware. Each piece of hardware will have at least one
driver domain associated with it, with which the guests communicate for accessing the
physical resources.

2. Integrating a device driver for the hardware in the hypervisor layer itself. This has en
even lower overhead for IO devices, however it is more compladaostly to implement,
so only a few select drivers have been implemented currently in the MicroVisor.

2.3 Enhancements of the MicroVisor architecture

This section describes the advancements of the MicroVisor approach, owedher traditional
hypervisor architectures, such aXen. The main difference of the MicroVisor from Xen and KVM

is that there is no control domain (DomO in Xen terminologyor host OS for KVM The
centralised Dom0O model means that split driver requests have to pass through the control
doman for each request and it becomes a bottleneck when many requests are being served to
multiple guest domains (DomuUs). In order to interface with hardware, which is one of the normal
roles of the control domain in this new architecture, new driver domainare needed. These
driver domains interface with the hardware and in the current implementation of the MicroVisor

3 https://wiki.xenproject.org/wiki/Mini _ -OS
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are implemented through minimal Linux domains or via MinDS domains for adding the driver
support. To provide even higher performance, in a Vie special cases (e.g. some network
interfaces or NVMe drives), such drivers have been integrated in the hypervisor itself.

Due to the absence of a control domain (Dom0), the MicroVisor architecture handles
configuration and management significantly differat from traditional hypervisors, such as Xen

or KVM, which can use Dom0O (or hostOS in KVM) for configuration and management services. To
allow efficient management, the MicroVisor architecture has moved a minimal essential set of
tools from DomO to the Hyprvisor layer itself, adding support for control and configuration APIs
needed.

In addition to moving configuration and control from DomO to the Hypervisor, the MicroVisor
architecture features a remotely accessible (i.e. networked) control and managemél, to
accommodate the fact that there is no control domain to run locally on each MicroVisor. The
result is an Ethernetlevel command API that allows locaticiagnostic monitoring and control of
any Hypervisor from a controller anywhere on the local Ethleet network. The MicroVisor
Ethernet-level API can be used in a distributed mode for monitoring and managing resources on
multiple remote Hypervisors (compute, network, and storage resources) from a single controller,
running on a VM anywhere in the locatluster.

Another important characteristic of the MicroVisor architecture is that storage /0 requests
cannot be sent in the usual blocback queues through DomO to storage drives, since there is no
DomO. Instead the MicroVisor architecture, being designegecifically for distributed operation,
converts the 1/0O requests into Ethernet frames and sends these directly via the Advr-
Ethernet protocol to either the local or remote storage server backends. Using Ethernet frames
ensures that the overhead of TRIP processing is removed and as such the I/O virtualization
overhead is significantly reduced. Overall, the use of Ethernet control frames for the
management, control, I/O and monitoring of the MicroVisor platform, along with the driver
domain and remova of DomO ensures that the virtualization overhead is much lower than the
standard hypervisor implementations. This results in higher performance and better control for
each of the resources and the guest domains.

Finally, an additional important aspect isthat the MicroVisor platform is designed to be a
lightweight Hypervisor platform that is better suited for emerging hardware platforms compared

to traditional Hypervisors (e.g. Xen or KVM). Currently x86 (Intel/AMD) platforms have used
NUMA architecturesfor increasing the number of processor sockets and addressable memory on
a single board. Cores in NUMA hardware are linked with certain regions of memory but can
access the entire system memory at a higher incurred latency cost and at lower speeds. ARM
basd, micro-server hardware platforms incorporate many cores that have lower performance
than the more widely used x86 (Intel/AMD) server platforms but are more energy efficient, and
systems | ike Kaleaods KMAX are ent estieffegfivet he da
alternative. The MicroVisor has been designed to work on both x86 (IntelAMD) and ARM
hardware platforms, but MicroVisor's performance and power advantages are especially
pronounced in the aforementioned lowpower ARMbased processors thatdve fewer resources.

2.4 The Rackscale Hypervisor

The ACTICLOUDarchitecture subcomponents of the Hypervisor platform are listed below,
including a brief description of each component and its functionality related to the specific
technology embraced i.e., thdlicroVisor platform.
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The MicroVisor hypervisor layer consists of the following subcomponents:

0 Hypervisor microkernel.The main Hypervisor microkernel islike Xen (Type )
but with significant differences in the handling of networking, I/0, and resource
management. Additionally it has a new Etherndiased managementalyer and several
more features, detailed in the rest of this list.

0 Resource scheduleihe resource scheduler is part of the Hypervisor kernel and
can be configured through the MicroVisor Ethiaet-level API. Pinning of resources can be
carried out accordingly. The scheduler then decides how the resources are presented
through the driver domains to the guest Virtual Machines and so can be used for rate
limiting and performance configuration.

0 Virtual Switch. An integrated internal packet switch is embedded in the
Hypervisor kernel to handle packet forwarding. This switch manages shared network and
I/O resources from different MicroVisor nodes to provide aggregated network and
storage resources thiaare linked and accessed from the guest VMs on each Hypervisor.

0 Ethernet packet handlerThe MicroVisor does not use TCP/IP for management or
resource control, using instead Ethernepackets This avoids having the heavy TCP/IP
stack within each domainput this does mean that a network reliability and flow control
protocol has to be implemented for moving control and monitoring data across
Hypervisors. This, however, is much lighter than TCP. VMs residing on the MicroVisor
can continue to use TCP/IP.

0 Driver domains and integrated driverdzor the MicroVisor,given that there is no
control domain (no Dom0), a driver when required is launched as its own Virtual Machine
(driver domain) that has access to the physical resource that can then be shared with the
guests. The current implementation of the driver domain uses MiniOS as the host OS,
which is a cut down minimalistic OS kernel used for stub domains. Additionally the
MicroVisor has integrated a small set of hardware drivers in the hypervisor layer itsgif
order to further optimize performance on specific network cards and NVMe storage
drives.

0 Monitoring systemA monitoring system is built into the MicroVisor, also through
Ethernet packets. Some values that would normally be exposed in GNU/Linux via th
0/ procod interface, for i nstance, are exposed
aggregators on the local network. Currently, several statistics about
CPU/network/memory/storage usage are captured and can be queried. Depending on the
requirements of the higher level components, these monitoring metrics can be extended.

0 Monitoring APl The monitoring values captured by aggregators on the controller
node are stored using the round robin database (RRD) format. Through a monitoring API
provided, one ca access the current status of a particular MicroVisor. The API describes
the resource that is being queried and how frequently the monitoring should be carried
out.

0 Orchestration API Control of the MicroVisor is carried out through the
MicroVisor API. Asigning workloads, managing VMs and the connected resources is
carried out through this API.

In addition to the Hypervisor layer, the MicroVisor platform includes several other components
that provide essential functions. These are described in the followi sections.
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2.4.1 Distributed Storage Platform

In the MicroVisor platform, besides the Hypervisor itself, OnApp has developed a distributed,
hyper-converged storage platform that is currently deployed in the OnApp Cloud platform as a
separate storage product. @App Storage allows for Hypervisors to use directttached storage
on the server machines as a distributed bloeitorage system. This has been used for many years
with Xen and KVM and is used in a large part of the ONAPP customer base. It is also crediae

a disruptive technology versus the conventional network attached storage (NAS) platforms that
are usually used in the data center. Most of the storage platform has been adapted from the
OnApp Storage solution for the MicroVisor platform, such that can be used to share storage
resources on clusters of machines running the MicroVisor platform. More details on the storage
layer implementation with a focus on the reliability and availability features is provided in
Section 2.5 .-tberanSé o&k aBeaiFlhabil ityod.

2.4.2 Guest Operating System support

The Guest Operating System (OS) refers to the typical OS that is inside a virtual machine (VM).
The requirements for the Guest OS within theCTiCLOUProject are to support unmodified OSes

for guest domans on established cloud infrastructures, which is exactly what the MicroVisor
platform supports. Thus, ACTiCLOU®nabled systems will be able to operate with any type of
Guest OS, although our experimentation and any changes to the system libraries ofGhest OS

is performed on established Linwbased systems. Hence, within the scope ACTICLOUDwe
focus our effort on Linuxbased systems, and particularly on the most popular Lirnpased cloud
image distributions (e.g. Ubuntu 16.04, 18.04, CentOS 7) &ic the final project prototype.

To create and deploy a new VM with a guest OS (e.g. Ubuntu 18.04), the user needs to use the
standard OpenStackUser Interface (Ul), called Horizon Ul, or th®©penStackcommand line
interface (CLI) that controls the MicoVisor platform. The basic steps of this process are the
following:

1. The image of the target OS that will be used for the instance (VM) is downloaded,

2. The user specifies through theOpenStackUl or CLI a flavor that will provide the
specifications for the hstance (according toOpenStackterminology), as well as the
network and storage settings for the instance,

3. Theinstance (VM) is created and the Guest OS starts its execution.

More information about this process can be found in the accompanying softwarertpaf this
deliverable and in theOpenStacldocumentation (Pike versiofy.

2.5 Reliability and Availability

ACTICLOUIggregates resource pools and, as such, may increase the likelihood for failures on
part of the system that affect other applications. Graceful degradation of the shared resources is
important to avoid the case where failures have an effect on greater fsof the system.

Since CSPs usually have redundancy in hardware, the MicroVisor storage platform offers
increased availability and reliability by utilizing redundant resources through data replication.
This type of replication is based on redundancy acslypervisor, so it can maintain availability
of a storage volume, not only when one of its storage devices fails, but also when a Hypervisor

4 https://docs.OpenStack.org/instalkguide/launch-instance.html
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that hosts one of the replicas for that virtual disk fails. Based on this level of storage availability,
the platform is also able to offer VM failover to another node, since the data volume is available,
even if a server fails.

2.5.1 Storage Fault-tolerance & Availability

The MicroVisor platform has an integrated distributed block storage service, where VMs running

on any of the Hypervisors can access any local or remote virtual volume through block I/O
requests that the MicroVisor converts to ATAver-Ethernet requests to local or remote backend

I/O servers. The backend storage pool consists of specialized virtual machi(éslis), called
storage nodes that have privileged access to the physical storage devices (e.g. hard disk drives,
SSDs or NVMe drives) that reside on each server machine. Each storage node is responsible for
handling the block 1/O requests of the drives i directly managing.

A physical storage device can only be associated with one storage node. However, the platform
offers storage pools, calledatastoregconfiguration details analyzed in Section 3), which are
logical layer configurations that map the physical storage drives into distributed storage pools
with different properties (e.qg. replicas for faulttolerance, or overcommit).

The number of replicagdetermines how many replicas of a block of data should be created in a
pool, and the corresponding level of faults that a virtual storage volume on the datastore can
tolerate. This can currently be set to 1 (i.e. one data replica / no redundancy), or 2amag the
storage block is replicated to one other drive and another server node, so it is not affected by
single-node or drive failures.

The overcommit value sets the value of resources allocated beyond the physical capacity that is
physically available n the system. In shared storage platforms although 10GB may be allocated to
a customer, only 5GB may be actually used with the rest remaining undétised. Across many
VMs in a shared pool this wasted capacity might be considerable, thus the overcomrpiiam
allows this to be set in order to increase actual utilization. Once the actual storage runs out, the
CSP will need to migrate some VM storage content to other drives or other storage pools. To
implement overcommit, storage nodes maintain a bitmap afie blocks that have been written
along with a tag that records the time of the block updates. Any transaction that is fully
committed should update this timestamp accordingly on all storage paths to maintain
consistency.

Storage replication and overcommithas been redesigned, implemented and failurdested
during the second period ofACTICLOUDThe final version developed has been integrated in the
final prototype of the ACTICLOUDlatform, providing a high level of storage reliability and
availability.

2.5.2 High-Availability Support for the MicroVisor management layer

Another aspect of the MicroVisor platform that is highly relevant to business scemar5
(enhanced reliability), asdiscussed in Deliverable D2.1, is the higivailability (HA) support for

the MicroVisor controller. The controller is designed to maintain the system availability,
avoiding the existence of a Single Point Of Failure (SPOF). A SPOF is an individual software or
hardware component of the whole system, whose failure could cause downtionelata loss. The
system downtime occurs when a service or hardware component, such as a virtual or physical
network switch, is unavailable beyond a specified maximum amount of time. Potential data loss
could occur on accidental deletion or destruction afata, such as the hard disk failure.

This document is Public and was produced under the ACTICLOUD project Pagel6of 87
(EC Contract No/32366)



ACTICLOUDH2020ICT-20161 Project No732366 D2.3: Raclscale MicroVisor v2.0

The MicroVisor controller HA is achieved through the support of three main components: the
MicroVisor management controller, the monitoring of VMs and the distributed storage service.

1. The MicroVisor management controlle running essential management services, runs on
a virtual machine (VM) that can be hosted on any MicroVisor host in the cluster or rack,
booting from a virtual Logical Unit (LUN) that is replicated. The LUN is announced via a
broadcast protocol that is @tected by all MicroVisor hosts attached to the same local
Ethernet network. A MicroVisor is designated (either via boot arguments or at runtime)
to host the controller node, and that particular MicroVisor then runs a periodic task to
ensure that the contoller node is booting and running. If it is not running, it is started
immediately. The process of failing over the controller is therefore a straightforward
mechanism to instruct a new MicroVisor to boot and host the controller in the event that
the original host for the controller node has failed. Detecting liveness is achieved by
running a quorum of separate nodes across the cluster of MicroVisors and using a
consensus protocol to decide if the hosting node has disappeared, followed by a
leadership electon process to determine the new host that will run the controller.

2. The ongoing monitoring of VM liveness is implemented in the controller node. In the
event that a controller determines a MicroVisor is no longer responding and all the VMs
are dead, it wil inform that storage layer to remove the active LUN mapping of the dead
nodes and restart them elsewhere. The selection of which MicroVisor to faiter each
VM is based on the resource group that the VM belongs to and the failure policy
configured and awailability of resources.

3. The distributed storage layer, discussed above, is based on the mature OnApp Integrated
Storage technology. This component provides a complete management stack for storage
content and provides storage nodes (the individual hostRdt control the direct attached
storage drives) to communicate amongst each other and determine liveness of each
otherds replicas. Storage content t hat i
mechanism. Whenever a storage replica is lost from thetsthe epoch is incremented to
ensure that the nonresponding member is forcibly removed from the set. If it comes
back online, it will always determine across the set of owners that it is has a stale set of
data and will force itself into a slave statug/hich means that it must be resynchronised
to ensure it is consistent again before it can be added back to the set.

More details on the operation and implementation of these HA components, liveness tracking of
services and faulttolerance of the controlle node and its metadata can be found in Deliverable
D2.1.

2.6 Rack-scale Monitoring

The MicroVisor platform provides mechanisms for monitoring and performance characterization
that are essential for the ACTiManager components of tReCTiCLOUIRrchitecture. These are
described in this section.

2.6.1 Monitoring Statistics

The MicroVisor platform currently includes monitoring mechanisms that gather statistics for the
following resources:

0 CPU usage
0 Network IO stats
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0 Block storage 10 stats
0 Memory utilization

The statistics are transmitted to an RRD aggregator service called statsd, running on a local node,
which receives stats via Ethernet packets and converts them to the RRD tsedes form. To
ensure isolation and separate handling, the MicroVisor usesdifferent Ethernet type for the
network transmission. Then, those packets are passed to tools, such as rrdtool and rrdcached, to
be aggregated and/or stored. Any aggregator that supports the RRD form can process these
statistics.

The following type of mérics are currently provided by the monitoring API, captured by the RRD
aggregator server and can be queried between time periods:

1. For every MicroVisor (i.e. at MicroVisor level)
1.1. Timestamp
1.2. Number of Physical CPUs (pCPUSs)
1.3. Number of CPU Pools
1.4. Number of NUMANodes
1.5. Number of Guests (VM domains)
1.6. Total Memory
1.7. Free Memory
1.8. Average Load
2. Per Physical CPU (local)
21. CPUID
2.2. CPUTime
2.3. Timestamp
3. Per NUMA node (local)
3.1. NodelD
3.2. Total memory
3.3. Free memory
4. Per CPU Pool (local)
4.1. CpuPool ID
4.2. Average Load
4.3.  Number of CPUs
4.4.  Number of Guestiomains
5. Per Guest Domain (i.e. local VM level)
5.1. VM domain UUID
6. Per vCPU (in domain)
6.1. CpulD
6.2. Timestamp
6.3. Utilization percentage
7. Memory (in domain)
7.1. Timestamp
7.2. Current memory used
7.3. Max memory available
8. Network VIFs (per Virtual Interface)
8.1. VIFID
8.2. Timestamp
8.3. Recvbytes
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8.4. Recv packets
8.5. Recv errors
8.6. Recv drops
8.7. Transmit bytes
8.8. Transmit packets
8.9. Transmit errors

8.10. Transmit drops

9. Storage (per Virtual Block Device)

9.1. VBDID
9.2. Timestamp
9.3. Backing dev type
9.4. Device name
9.5. Outstanding IO requests (humber)
9.6. Read requests
9.7. Write requests
9.8. Read seors
9.9. Write sectors

The frequency of the generated messages can be configurable from a few seconds to minutes;
however, very frequent updates will generate a lot of network traffic on large clusters. A
frequency in the order of tens of seconds should bsufficient for most monitoring and
orchestration uses.

2.6.2 Performance counters on Virtualization

Besides monitoring statistics for the platform, the integration with the ACTiManager and
orchestration services requires more fingrain and detailed statistics hout the CPU behavior in
VMs and applications running in VMs. For that purpose the MicroVisor implements performance
counters at the hypervisor layer that provide a multitude of lowevel, high-frequency metrics
that can be used to characterize the behavicand performance bottlenecks of VMs and
applications.

The performance counter layer and tools access tRerformance Monitoring Unit(PMU)in the

CPU cores, allowig a close look at the behavior of the hardware and its associated events, similar

to the oOperfdé Linux tool. The MicroVisor- all ows
architectural events in hardware, such as the number of cycles, instructionsiret, LLC cache

misses and so on. Those events are cal®ddU hardware eventsr hardware events for short,

and they vary with each processor type and modelCurrently the MicroVisor provides support

for these events on some common Intel x86 CPUs (e.qpnXeSkylake CPUs), while support for

more hardware models will be gradually added.

Additionally the hypervisor itself is providing detailed metric for its own hypervisor software
events, such as exceptions, vmexits, apic timer interrupts, interrupts, hymalls, context
switches, domain page TLB flushes, mmuext ops, calls to mmu_update, page updates, and many
more. Appendix I, Section 6.3 includes a detailed list of the current hypervisor performance

5intel® 64and IA32 Architectures Software Developerds Manu a
https://www.intel.com/content/www/us/en/architecture _-and-technology/64-ia-32-architectures-
software-developersystemprogramming-manuat325384.html
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counters used in order to measure the performance of éabypervisor node and VM domains
running on it.

The current implementation includes acmd i ne tool paméddomhat!| can r
performance counters provided by the Micrdisor over the Ethernet and report them as output,
as well as reset the couars if needed.

The mvcthperfc tool currently has the following options:

0 --perfc-dump (dumps all perfcounters)
0 --perfc-get <perfcnter name> (dumps specific perfcounter)
0 --perf-reset (resets perfcounters)

2.7 Performance

2.7.1 VvNUMA Support

On NonUniform Memory Access (NUMA) architectures, memory accessing times of an
application running on a CPU core depends on the relative distance between that specific CPU

core and the specific memory. Modern server CPUs (e.g. Intel Xeons) are NOd&&d systems,

where each CB core has its own o0local 6 memory, whi ch
latency and high throughput. On the other hand, loading or storing data from and to remote

memories (i.e. memories local to some other CPU cores in the system) is quite more ergrid

slow. NUMA machines are becoming more and more common, as the number of CPU cores
increases.

NUMA awareness, that is the knowledge of the distance from each CPU to each memory node, has
a significant performance impact on large machines, as soon r&ny VMs start running
memory-intensive workloads on a shared host. In fact, the cost of accessing remote (non node
local) memory locations is high, and the performance degradation is likely to be noticeable.
Published performance results othe Xen hypervisor for a memoryintensive benchmark with
several competing VMs running concurrently on a hypervisor with 2 NUMA nodes, indicate up to
25% better performance when using all local memory vs. remote memdties

VNUMA (virtual NUMA) support allows NUMAwareress for a virtual machine for many virtual
CPU cores (VCPUs), allowing the OS scheduler and applications in the VM to make Nl
decisions on memory allocation and CPU core affinity. A vNUMA topology is currently defined as
a set of parameters such as

O«

number of yYNUMA nodes

distance table

vhodes memory sizes

vcpus to vnodes mapping

0 vnode to pnode map (for NUMA machines).

O« O¢ O«

In the MicroVisor implementation, the vVNUMA topology is exposed to HVM guests to improve
performance when running workloads on NUMA machines. vNUMAabled guests may be
running on non-NUMA machines and thus having virtual NUMA topology visible to gueststhe

6 Xen on NUMA Machinebttps://wiki.xen.org /wiki/’Xen on NUMA Machines
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current MicroVisor implementation of vNUMA, the default behavior when creating an HVM
instance is to split the memory among all available NUMA nodes in the system.

Currently, the MicroVisor implementation of VNUMA is being optimized and tested for
regressions, in order to be merged into the main MicroVisor code. The MicroVisor without
VNUMA support shows the following console outpu:
domain:

(NEX) [2019 - 07- 16 09:06:58] Domain 6 (total: 8380935):
(NEX) [2019 - 07-16 09:06:58] Node 0: 8380667
(NEX) [2019 - 07- 16 09:06:58] Node 1: 268

With NUMA support and the current YNUMA implementation, the MicroVisor console command
output for memory allocated for a VM domain is the following:

(NEX) [2019 -07-16 09:10:11] Domain 5 (total: 8384496):

(NEX) [2019 - 07-16 09:10:11] Node 0: 4192248

(NEX) [2019 - 07-16 09:10:11] Node 1: 4192248

(NEX) [2019 -07-1609:10:11] 2 vnodes, 32 vcpus, guest physical layout:

(NEX) [2019 -07-16 09:10:11] 0: pnode 0, vcpus 0-15

(NEX) [2019 - 07- 16 09:10:11] 0000000000000000 - 00000003ffffffff
(NEX) [2019 -07-16 09:10:11] 1: pnode 1, vcpus 16 -31

(NEX) [2019 - 07-16 09:10:11] 0000000400000000 - 00000008o0fffffff

2.7.1.1 Guest vNUMA support

On the current MicroVisor implementation of vNUMA, the NUMA information output on a
vNUMA-enabled guest VM is presented below:

root@instance - 4:/home/ubuntu# numactl TH
available: 2 nodes (0 -1)
nodeOcpus:0123456789101112131415
node 0 size: 15771 MB
node O free: 15353 MB
node 1 cpus: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
node 1 size: 16360 MB
node 1 free: 15912 MB
node distances:
node 0 1

0: 10 20

1. 20 10
root@instance - 4:/lhome/ubuntu# numactl -s
policy: default
preferred node: current

physcpubind: 012345678910 11121314 151617 18 19 20 21 22 23 24 25
262728293031

cpubind: 0 1
nodebind: 0 1
membind: 0 1
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In contrast, a VNUMAdisabled guest VM on the MicroVisor shows no NUMA awareness, and all
CPU cores amar to be on the same node:

root@instance - 5:/home/ubuntu# numactl -H
available: 1 nodes (0)

nodeOcpus:01234567891011121314151617 1819 202122232425
26 2728293031

node 0 size: 32132 MB
node O free: 31463 MB
node distances:
node 0
0: 10
root@instance - 5:/home/ubuntu# numactl -s
policy: default
preferred node: current

physcpubind: 012345678910 111213141516 17 18 19 20 21 22 23 24 25
262728293031

cpubind: 0
nodebind: O
membind: 0

2.7.1.2 vNUMAPerformance Impact

To demonstrate the impact of vYNUMA and NUMA awareness in VMs on the MicroVisor, the
Stream memory bandwidth benchmarkhas been used to measure memory performance. For the
purposes of the benchmark we created two HVM instances, eachhwi6 CPU cores, 32GB of
memory and 100GB disk. One VM had vNUMA support enabled and the other YNUMA disabled.

The results shown below demonstrate clearly the performance advantages of NBwareness
with vNUMA. We observe that NUMAnabled VMs with CPU pining perform up to 228% better
than non-NUMA-enabled VMs, also with CPU pinning enabled.

1. NUMAenabled guest VM (no CPU pinning):

7 STREAM: Sustainable Memory Bandwidth in High Performance Computers
https://www.cs.virginia.edu/stream/
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$ /stream - old

[snipped]

Function  Rate (MB/s) Avg time Mintime Maxtime
Copy: 63710.9499 0.0017 0.0016 0.0065

Scale:  60024.5188 0.0018 0.0017 0.0066

Add: 66281.3917 0.0025 0.0023 0.0077

Triad: 66170.5880 0.0025 0.0023 0.0498

Solution Validates

2. NUMAenabled guest VM (spli

t cores, with manual CPU pinning):

$ ./stream - old

[snipped]

Function  Rate (MB/s) Avgtime Mintime Maxtime

Copy: 82174.4774 0.0013 0.0012 0.0058

Scale:  74124.3794 0.0015 0.0014 0.00 64
Add: 84262.7325 0.0019 0.0018 0.0057

Triad:  80492.9712 0.0020 0.0019 0.0192

Solution Validates

3. NUMAdisabled guest (CPU pinning enabled by default in the resource group):

$ ./stream  -old

[snipped]

Function  Rate (MB/s) Avgtime Mintime Maxtime
Copy: 34795.8188 0.0030 0.0029 0.0054
Scale:  33712.2696 0.0031 0.0030 0.0051

Add: 36936.8189 0.0041 0.0041 0.0044

Triad:  37256.2326 0.0041 0.0041 0.0060

Solution Validates
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The following graph illustrates the memory throughput difference with and without VNUMA
support.
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0

—

=] NUMA-aware: No CPU
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w NUMA-aware: Manual CPU
E pinning

Mo NUMA-aware: Default
CPU pinning

Copy: Scale: Add: Triad:
Function

Figure 1: Memory throughput

2.8 Web-based User interface

In ACTICLOUR MicroVisor webbased User Interface (Y component has been developefdr

configuring and controlling the platform and its resources on top of the control stack and

services. The web Ul has been designed and implemented by OnApp as a dynamic welefdnt

using the React javascript fr asgeg whlethe backendisni ng o
provided by the MicroVisor management REST API implemented in a Go server, which interfaces

with the control stack services to manage the MicroVisor platform resources.

Several components of the Ul have been redesigned and impibva the Final MicroVisor
prototype, managing racks, Hypervisors, networks, storage and instances (VMs). The Figures
below display general views of the MicroVisor dashboard:
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n Dashboard
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Figure 2: MicroVisor Ul & Dashboard showing platform resources
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Configure Racks
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Figure 3: MicroVisor Ul d Rack view showing their resources
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Resource
Groups

Resource Groups

Create Resource Group

2

Resource Groups

Cores (used virtual /

total real) Memory (used / total) Storage (used / total)

reserved group 0/12 0.00 B / 93.95 GB 24.32 GB / 25.90 GB

ResourceGroup-One 0.00 B / 83.95 GB 12.73 GB / 268.51 GB

Figure 4: MicroVisor Ul & Resource groupview showing grouped resources
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Datastores
Datastores

29440 GB 37.05 GB

Total Storage  Used Storage
Y= Filter

Used Space Total Space

OPENSTACK_DS

Datastore-One 134.25 GB

Dataglore Two 134.25 GB

D2.3: Raclscale MicroVisor v2.0

Create Datastore

Available Space Actions

127.89 GB

127.89 GB

Figure 5: MicroVisor Ul 8 Datastore view showing configured datas tores and used storage

capacity
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Clusters

Clusters Create Cluster

Y= Filter

Total

Description Image Used Instances Total Cores  pamory

® Instance-One Instance One Description @ ubuntu 537 MB

®  Docker-One Docker One Description docker @ ubuntu

Figure 6: MicroVisor Ul 0 Instance view showing virtual m achines configured and deployed
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3 Resource control in the MicroVisor platform

As mentioned in Section 2, in the MicroVisor platform eesource groug a combination of CPU
cores, memory units and storage units that operates as a separate resource pool with common
characteristics, such as storage performance, locality, CPU locadibd pinning, overcommit, etc.
These processing, networking and storage resources can be located anywhere in the cluster
infrastructure (e.g. in one or more racks).

The notion of resource groups is essential to the MicroVisor and all virtual machines (VMs o
server instances) must belong to a resource group, which is required upon VM creation time. The
resource group for the VM identifies the set of physical CPU cores that the VM can be executed
on (or pinned on if CPU pinning policy is selected), as wedl the associated storage datastores
and networks that the VM can use (e.g. a pool of fast NVMe flash storage, or a slower hard disk
pool).

3.1 Relevance toACTICLOUDDDjectives

The resource groups are used to pool resources of VMs into separate isolated granporder to
place VMs in different resource pools. The concept of resource groups can be used to provide:

0 Tiered levels of service for VMs, such as a higlrformance tier, using for example quick
storage or network with pinned CPUs, or a slower tiersimg shared overcommitted CPUs
without pinning and slower storage.

0 Guaranteed VM performance (e.g. VMs pinned on specific CPUs)
0 Performance isolation for different VMs that can be noisy and affect others.
0 Multiple reliability and availability levels of sewice for VMs.

This is directly related to theACTiICLOUBtrategic Objective 1 (SO1): Effective utilization of cloud
resources. This strategic objective is sought by unchaining resource management and
provisioning from the physical bounds of a single servand a single cloud site, together with the
implementation of novel resourceaware allocation policies. SO1 is further split into the
following two explicit sub-objectives that are concurrently pursued:

SOL1.1: Resource efficiency: Focusing on the requieens of Cloud Service Providers (CSPs) for
reduced Total Cost of Ownership (TCACTICLOURImMs to drastically increase the resource
efficiency of cloud infrastructures in terms of throughput per resource unit.

SO01.2: Performance stability: Focusing ohet requirements of endusers, ACTICLOURIms to
deliver performance stability to applications in terms of minimized performance variation
compared to standalone execution.

3.2 Performance features of Resource Groups

Several performancerelated features in theMicroVisor platform are supported through resource
group attributes, which are applied on all VMs configured in each resource group. These features
are explained in more detail in this section.

3.2.1 NUMA CPU assignment

When creating or editing a resource groum@ system administrator controls which physical CPU
cores are assigned to the group and therefore on which physical cores a VM in the group can
execute on. The platform (i.e. the API, CLI and Ul) provide NUMA hardware information to the
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user configuring the resource groups. Also the web Ul groups the CPU cores according to their
physical NUMA nodes, so resource groups can be created using any combination of CPU cores
within NUMA nodes or across multiple of them. This allows control of the NUMA physical CPU
cores where VMs will be using, according to the user preferences for performance (i.e. exploiting
the NUMA topology).

3.2.2 CPU overcommit

CPU overcommit on the MicroVisor allows more than one VMs to execute on the same physical
CPU cores, which is useful in mgmmulti-tenant workloads in VMs that do not require dedicated
CPUs for performance. On the other hand, no CPU overcommit implies-t@-1 mapping of
virtual CPU cores to physical cores and can provide increased CPU performance on dedicated
physical CPUs. fiis resource group policy can be configured during resource group creation and
applies to all VMs that belong to that group, allowing shared or dedicated CPU resources
depending on VM needs.

3.2.3 CPU Pinning (Core Assignment)

CPU core assignment, or as it isadly known, CPU pinnings performed through the Hypervisor

and controlled via the management layer and the Ul via resource groups. It essentially enables
the binding and unbinding of a VM process to a CPU or a range of CPUs, so that the VM processes
or threads will execute only on the designated CPU(s) rather than any random CPU the scheduler
decides. CPU pinning takes advantage of the fact that remnants of a VM process that was run on a
given processor may remain in that processor's state (for examplata in the cache memory)

after another process was run on that processor. Scheduling that VM process to execute on the
same processor improves its performance by reducing performandegrading events such as
cache misses.

CPU pinning is a property of a mource group, which means that every VM on a resource group
created with the pinning enabled, will have CPU pinning on specific CPUs. When creating or
editing a resource group, a system administrator controls which cores are assigned to the group
and therefore on which physical cores a VM in the group can execute on.

3.2.4 Storage Optimisation

During resource group deployment the wuser can
enables a policy to allocate one storage replica on the same physical server wherVM is
running. This means that when we create a VM
replica of all its virtual disks will be mapped to physical storage residing on the same server host.

Optimized local storage minimizes latency (and usualiycreases throughput) for all 1/0O read
requests, which are sent only to the local replica, avoiding network transfers. Local storage
performs particularly well with fast NVMe flash drives, which have lower latencies and higher
throughput than common netwak interfaces and protocols (i.e. 10GBps NICs). Replication for
I/O write requests, however, performs at networlbound speeds, since the data are replicated on
storage drives located on a separate server, over the network.

3.3 Reliability and availability fea tures of Resource Groups

Regarding reliability and availability in resource groups, the following capabilities are supported:
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3.3.1 Fault-tolerance

The 'Fault Tolerance' option in a resource group allows specification of the Unit of fault tolerance
required for VMs and storage (None/Blade/Chassis/Rack) and the maximum number of Units
allowed to be lost while remaining in a faultolerant state. With this feature the configuration of

a VM maintains redundancy across a blade, chassis or rack to satisfy ftld#rance
requirements for the resource group.

3.3.2 Failover

I f the OAutomatic failovero option ofresmuceesour c
group would trigger automatic failover of the VM in another node that is configured in the same

resource group (depends also on the fatiblerance level selected). To support such a failover

feature, the system requires a level of redundancy otsources, which is enforced by the

resource group and VM configuration policies.

3.4 Configuration of Resource groups via the Ul

Resource groups with CPU pinning and overcommit, as well as binding to specific storage and
network resources are a core concept dhe MicroVisor platform and it is essential for all
resource configuration to use them for the system operation.

To demonstrate the concept and provide a clear view of the usage and implementation of
MicroVisor resource groups, we present in this sectiotheir configuration through the

Mi croVisor web UI . The process has been simpldi
necessary information for the creation of a resource group, which maps to all layers of the

system through the controller stack and APMWe believe this demonstrates the concept and the

control features that are essential t?ACTiCLOUDbjectives for efficient resource management.

In the MicroVisor platform all virtual machines (also noted as VMs or server instances) must
belong to a resouce group. The resource group is identified by a set of physical CPU cores on one
or more server hosts that are members of the group and is associated with a number of storage
datastores and networks.

In order to create a resource group through the MicroMis Ul, the administrator must:

1. Select the Resource Group tab.
2. Click the Create Resource Group button.
3.  Fillin the configuration form through the following steps.

Initial Setup - No Resource Group available:

In case of an install in a branchew system (i.ethat has not been previously configured), the
Resource Groups menu option in the Ul should look like the following:
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n sshboard ack Network tastor Insta Resource Groups

Resource Groups Create Resource Group

@ To create instances you first need to:

+ 1. Create a Resource Group

Create your first resource group

[a] Resource Groups
o o

Figure 7: Resource group configuration

In order to properly create a Resource Group, the steps described below must be followed:

Step 1- Select Storage Optimisation / Enable Fault Tolerance

The Storage Optimisation option is enabled by default.
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1 Requirements
Step 1

Disabled

4

None selected

None selected

Figure 8: Storage optimization

In the context of cores assignment, 'CPU overcommit' attribute is supported and can be applied
across all the selected cores. This feature provides the capability to allocate more than 1 virtual
cores to a single physical core. Specificallysers can choose between the range of 2 to 8 virtual
cores to be assigned to one single core.

1 Requirements
Step 1

Disabled

@

Figure 9: CPU overcommit

By enabling 'CPU Pinning' attribute, each virtual core corresponds to only one physical core, and
as a resultCPU overcommit' is disabled.

The 'Enable Fault Tolerance' option allows specification of the Unit of fault tolerance required
(Blade/Chassis/Rack) and the maximum number of Units allowed to be lost while remaining in a
fault tolerant state.

The option toAutomatically Failover in the case of a failed Unit is also available.
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Figure 10: Fault tolerance

Step 2- Select available datastores that will hold VM data

Select one or more data stores that are accessible to the resourceaugraccording to step 1
selections

5 Select Physical Disks
Step 2 .

7ac2t8be % Disabled

v .Mamm.:n}a 8 -

Figure 11: Datastores selection

Step 3- Select the compute node resources (MicroVisors)

Select the members (compute nodes) that you want to make part of the resource group.

Select Compute Nodes
Step 3

Figure 12: Nodes selection

Step 4- Select the cores that will be assigned to the group

Select the cores on each member to assign to the resource group.

This document is Public and was produced under the ACTICLOUD project Page35o0f 87
(EC Contract N0/32366)



ACTICLOUDH2020ICT-20161 Project No732366 D2.3: Raclscale MicroVisor v2.0

Select Cores
Step 4

Select all

Figure 13: Cores selection

Step 5- Assign the networks to which the instances may have access
Select one or more networks that are accessible to the resource group.

Select Networks
Step 5

Name
Physical NIC 0
Physical NIC 1

Network-One

Figure 14: Networks selection

Step 6- Finalize the configuration

Enter a name and relevant desiption. Click the Finish button to complete the resource
group creation.

Add name & description
5
Step 5

New Resource Group

This is a new resource group.

Figure 15: RG configuration finalization
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List of Resource Groups

In case the system has been previously configured, the Resource Groups menu optiondwou
display them in a list, as shown in the following example:

‘ . Resource Groups

Resource Groups Create Resource Group

[ Show Resenved Resources Y= Filter

43 Cores (used virtual / total real) e] Memory (used / total) Storage (used / total) Storage Optimized Actions

0/120 0.0B/183.5 GB 72TB/9.2TB EQ -

Figure 16: RG availability

3.4.1 Command-line support for resource groups

There are several commands through the CLI to manage resource groups, such as create, delete,
edit resource groups, as well as add and remove network or datastores to them. For reasons of
brevity we only present the CLI commands to create a resource group with their options. All the
available commands can be found in our CLI documentation.

COMMAND:
create_group
NAME:
- Create a new resource group.
USAGE:
[command options] [arguments...]
DESCRIPTION:
Create a new resource group.
Example:
osd create_group -- name=super -- core_ids=54424488_4,54424488_5 -- network_ids=66,2 --

datastores=fjxi3vnzgdhm9y

OPTIONS:
-- json Return the output as json.
-- name value The display name of the object.
-- description value The description of the object.
-- core_ids value The list of physical cores, based on their IDs
-- network_ids value The list of networks, based on their IDs
-- datastores valu e The list of datastores, based on their IDs
-- cpu_overcommit value The maximum number of extra vCPUs per pCPU for each

VM.For example cpu_overcommit=2 will let each
physical core run 2 virtual cores. (default: 0)
-- disabl e_storage latency optimization This attribute will be used when creating an
instance to prioritize the MicroVisor that has
at least one local physical disk from the selected

datastore.

-- enable_cpu_pinning This attribute will enable the CPU pinning for all
the instances created for this group.

-- filter value Filter the values you want to see from the output.

-- enable_ft Enable the fault tolerance.

-- ft_u nitvalue Choose one of the fault tolerance units: 'mvgroup’,

'blade’, ‘chassis' and 'rack’
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-- ft_max_failures value The number of MicroVisors that are acceptable to
fail. (default: 0)
-- disable_ft_auto_failover Disable the fault tolerance's automation failover

3.4.2 API support for Resource groups (resourceGroupsPost)

There are several calls for managing resource groups in the MicroVisor API, as all the operations
of the Ul are handled via the REST APlgecreate/delete/edit resource group). For reasons of
brevity we only present the resourceGroupsPost APl endpoint (/resource_groups), which creates
a new resource group. More details and all the available REST API endpoints and their options
can be foundn our APl documentation.

/resource_groups

On the following scenarios, the endpoint will fail with 422 validation error:

6 The name cannot be empty. (422)

6 No core ids are assigned. (422)

6 No datastore ids are assigned. (422)

6 No network ids are assigned. (422)

6 Unknown core, datastore or network ids are given. (422)

6 The cpu_overcommit value is less than 1. (422)

6 The cpu_overcommit value is greater than 8. (422)

6 The CPU pinning is enabled and the cpu_overcommit is over 1. (422)

3.4.2.1 Usage and SDK Samples
Curl:

curl -X POST

3.4.2.2 Parameters

6 Body parameters

Name Description

resourceGroup {
Required: cores,cpu_overcommit,datastores,name,network_ids
name: string
description: string
datastores: [
The datastore ids that will be assigm#ée resource group.
String |
network_ids: [

The network ids that will be assigned to the resource group.
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integer (int64) |

cores: [

The core ids that will be assigned to the resource group.
String |

cpu_overcommit: integer(int32) minimum:1

The numberf@xtra virtual cores that can be created over a physical core. For
a cpu_overcommit value of 2 means that 2 virtual cores can be created f
physical core.

is_storage_latency_optimizedboolean

This attribute will be used when creaimgnstance to prioritize the MicroVisor
has at least one local physical disk from the selected datastore.

is_cpu_pinning_enabledboolean

This attribute will enable the CPU pinning for each instance created in the
group. CPU pinning medret the system will pin each virtual core of the instan:
physical core. The default is false.

fault_tolerance: {
is_enabled:boolean

unit: string

max_failures: integer
automated_failover: boolean

is_degraded:Boolean }

}

3.4.2.3 Responses

3.4.2.3.1 Status: 202 Resource group successfully created.
{

A resource group is a combination of CPU cores, memory units and storage units. These resources can be locat
anywhere in the infrastructure.

Required: id

id: integer (int32)

name: string

description: string

datastores: [

The ids of the datastores that are assigned to the resource group.
String ]
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disk_ids: [

This is an array containing all the disk ids that belong to all the datastores that are assigned to this resource group.
String ]

network_ids: [

This is a array containing all the network ids that are assigned to this resource group.

integer (int64) ]

cores: [

The ids of those cores that are assigned to the resource group.

String ]

virtual_cores: integer (int32)

The total number of virtual cores creajethdtances. These virtual cores are using the physical cores that are
assigned to the resource group by definition

real_cores:integer (int32)

The total number of physical cores.
core_usage:number (float)

The percentage of the physical cores oftheas group that are currently used by the virtual cores of the instances.
cpu_overcommit: integer (int32) minimum:1

The number of the extra virtual cores that can be created over a physical core. For example cpu_overcommit 2 mean
that the scheduler adlates up to 2 virtual cores per physical core.

avail_memory: integer (int32)

The available memory from the processing units in the resource group. The value is in MB.
total_memory: integer (int32)

The total memory from the processing units in theceegoaurp. The value is in MB.
total_storage: integer (int32)

The total space of the datastores in the resource group. The value is in MB.
avail_storage:integer (int32)

The available space of the datastores in the resource group. The value is in MB.
is_reserved:boolean

Denotes if the resource group is reserved which means that it Bpesestégnd/or other services.
is_storage_latency_optimizedboolean

This attribute will be used when creating an instance to prioritize the MicroViaeiathaghkt one local physical
disk from the selected datastore.

}

This document is Public and was produced under the ACTICLOUD project Page40of 87
(EC Contract No/32366)



ACTICLOUDH2020ICT-20161 Project No732366 D2.3: Raclscale MicroVisor v2.0

3.5 Storage & Configuration of Datastore

As it has already been mentioned in Section 2Datastorés a collection of physical drives with a

redundancy and overcommit policy applied. All thalata that is stored on the system is thin
provisioned so the available physical storage ¢cé¢&
be noted that any overcommitment of storage comes with an associated risk that the system may

run out of physical stgage if excessive data is stored on the disks. In order to present local

storage drives to the server workloads as a unified storage layer, the available drives must be
selected and a distributed oDatastored shoul d be

In order to configure Datastores, the steps described below must be followed:

1. Click the Datastores tab.
2. Click the Create Datastore button.

Fill in the storage configuration form step by step:

In case no Datastore has been previously configurethe "Datastores” menu optio should look
like the following screenshot:

a

Datastores

To create instances you first need to.

1. Create a Datastore
+ 2. Create a Resource Group

Create your first datastore

Datastores

Figure 17: Creating a datastore
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Step 1- Select the Compute Resources:

Select the compute nodes with the physical storage to be added to the Datastore. This will
populate theavailable storage drives that are present across all the selected compute nodes.

n Datastores

Select Compute Nodes
Step 1

. 111143132

Name Used Space / Total Space Available Disks / Total Disks
111 0.0B/29TB 11
143 21.5GB/29TB 1/2

132 00B/29TB 11

Figure 18: Compute nodes selection

Step 2- Select the drives:

Select the drives to be added into the Datastore (multiple drives required-tbfatdnce
with multiple replicas are needed).

Select Physical Disks
2 o

iy, 0.0B/28TB
oo
- Finish

Jily, 00B/29TB

iy, 00B/28TB

Figure 19: Physical disks selection

Step 3- Select the Redundancy:

Select the redundancy level to be applied (1 or 2 replicas).
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Select Redundancy Levels
Step 3

3

< B

1 Replica 2 Replicas

Figure 20: Datastores redundancy

Step 4- Enable DB metadata(system DB backup):

Enable metadata, in order for the platform to automatically back up all system databases and
restore data from a specific backup (this is for the Haiggilability of the controller metadata,
which can be replicated on multiple storage devices).

DB Metadata
4 siepa

@

Figure 21: Enable metadata

Step 5- Finalizing the Datastore implementation:

Assign a Name and a Description to the new Datastore that has been created. This information
will be displayed in the Datastore list and will be used to identify the storage group when
assigning to a resource group. Selecting "Finish" will create the Datastore.

Add name & description
Step 5

Datastore-One

Datastore one

Figure 22: Finalizing Datastore
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If the system has beerconfigured properly, the Datastores menu option should look like the
following example:

Figure 23: Created Datastores list

3.5.1 Command-line support for datastores

There are several commands through the CLI to manage datastores, aghbreate, delete, edit
datastores, as well as add and remove disks to datastores. For reasons of brevity we only present
the CLI commands to create a datastore and list datastores with their options. All of the available
commands can be found in our Cbcumentation.

COMMAND:
create_datastore
NAME:
- Create a new datastore.
USAGE:
[command options] [arguments...]

DESCRIPTION:

Create a new datastore.

Example:
osd create_datastore -- name=test -- disks=3584916917,3283879690 -- replicas =1 -- thick=1

OPTIONS:

-- json Return the output as json.

-- name value The display name of the object.

-- disks value The list of storage disk's IDs.

-- overcommit value The overcommit value of the space that the volumes can take.

-- replicas value The number of replicas we want for the volumes. (default: 0)

-- thick value The attribute to make the datastore thick. (default: 0)

-- db_metadata Enable a vdisk for backing up the DBs.

-- filter value Filter the values you want to see from the output.

-- trigger_repair value How to trigger the repairs when the volumes are degraded,

‘periodic’ or 'manual’.
-- periodic_repair_sec value When the trigger_repair is periodic, then we can write in

seconds the periods it will check the volumes. (default: 0)
-- num_of_repairs value The number of repairs it can do in a parallel. (default: 0)

##

COMMAND:
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