

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 1 of 87

ACTiCLOUD: ACTivating resource efficiency and large databases in the
CLOUD

Project No: 732366

H2020-ICT-2016-1

D2.3: Rack scale MicroVisor v2.0

Due date of deliverable: M32 (2019/08/31)

Actual submission date: M33 (2019/ 09/ 13)

Executive summary:

Deliverable D2.3 provides the final version of ACTiCLOUDõs rack-scale Hypervisor. The deliverable
consists of software (binaries and source code), as well as the current documentation. This
deliverable is an updated version of Deliverable D2.1, which presented the initial implementation
of the rack-scale Hypervisor.

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 2 of 87

List of authors:

Author Affiliation

Michail Flouris OnApp

Stelios Louloudakis OnApp

Dissemination
Level

X PU (Public)

 PP (Restricted to other programme participants)

 RE (Restricted to a group specified by the consortium)

 CO (Confidential, only for members of the consortium)

Where restricted, access granted to:

Nature

 R (Report)

 P (Prototype)

 D (Demonstrator)

X O (Other)

Review Status

 Draft

 WP Leader accepted

 QA approved

X Coordinator accepted

Revision History:

Version Author(s) (Affiliation) Notes

0.1 Michail Flouris (ONAPP) Initial ToC

0.2
Michail Flouris (ONAPP)
Stelios Louloudakis (ONAPP)

Initial draft content

0.5 All authors Final version for internal review

0.7
George Goumas (ICCS)
Atle Vesterkjær (Numascale)

Deliverable reviewed

0.9 All authors Addressing reviewers comments

1.0 All authors Final version

1.1 Vasileios Karakostas Submitted version

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 3 of 87

ACTiCLOUD Consortium:

Participant No Participant organisation name Short
name Country

1 (Coordinator) Institute of Communication and Computer
Systems ICCS Greece

2 Numascale AS NSCALE Norway

3 Kaleao Limited KALEAO UK

4 OnApp Limited ONAPP Gibraltar

5 University of Manchester UNIMAN UK

6 MonetDB Solutions B.V. MDBS Netherlands

7 Neo Technology NEO Sweden

8 UMEA University UMU Sweden

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 4 of 87

Confidentiality:

This document contains proprietary and confidential material of certain ACTiCLOUD contractors,
and may not be reproduced, copied, or disclosed without appropriate permission. The
commercial use of any information contained in this document may require a license from the
proprietor of that information.

THIS DOCUMENT IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS DOCUMENT, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 5 of 87

Table of Contents

1 Introduction 9

1.1 Purpose of this Document ... 9

1.2 Relevance to ACTiCLOUD objectives, business scenarios and use cases 9

1.3 Document Structure ... 10

2 The Rack-scale MicroVisor architecture 11

2.1 Virtualization and traditional Hypervisors ... 11

2.2 Motivation for the MicroVisor Hypervisor ... 12

2.3 Enhancements of the MicroVisor architecture .. 12

2.4 The Rack-scale Hypervisor .. 13

2.4.1 Distributed Storage Platform .. 15

2.4.2 Guest Operating System support .. 15

2.5 Reliability and Availability .. 15

2.5.1 Storage Fault-tolerance & Availability .. 16

2.5.2 High-Availability Support for the MicroVisor management layer 16

2.6 Rack-scale Monitoring ... 17

2.6.1 Monitoring Statistics .. 17

2.6.2 Performance counters on Virtualization... 19

2.7 Performance .. 20

2.7.1 vNUMA Support .. 20

2.8 Web-based User interface .. 24

3 Resource control in the MicroVisor platform 30

3.1 Relevance to ACTiCLOUD Objectives .. 30

3.2 Performance features of Resource Groups .. 30

3.2.1 NUMA CPU assignment .. 30

3.2.2 CPU overcommit ... 31

3.2.3 CPU Pinning (Core Assignment) ... 31

3.2.4 Storage Optimisation ... 31

3.3 Reliability and availability features of Resource Groups ... 31

3.3.1 Fault-tolerance .. 32

3.3.2 Failover .. 32

3.4 Configuration of Resource groups via the UI .. 32

3.4.1 Command-line support for resource groups ... 37

3.4.2 API support for Resource groups (resourceGroupsPost) ... 38

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 6 of 87

3.5 Storage & Configuration of Datastore .. 41

3.5.1 Command-line support for datastores ... 44

3.5.2 API support for Datastores (datastoresPost) ... 45

4 Integration of the MicroVisor into OpenStack 50

4.1 Managing rack-scale resources through OpenStack .. 50

4.2 Revised OpenStack architecture on the MicroVisor platform .. 51

4.2.1 Implementation of OpenStack Pike in the previous prototypes 51

4.2.2 A new OpenStack management architecture for the Final prototype 53

4.3 OpenStack Implementation for the Final Prototype .. 53

4.3.1 External API ... 54

4.3.2 OpenStack drivers .. 55

4.3.3 Network: Neutron ... 55

4.3.4 Installation scripts .. 56

4.3.5 Open-source release of OpenStack drivers .. 56

4.4 Control via OpenStackõs Horizon UI ... 56

4.4.1 Listing Hypervisors in the MicroVisor cluster .. 57

4.4.2 Creating Instances .. 57

4.4.3 Creating Flavors .. 61

5 Conclusions 62

6 Appendix I 63

6.1 MicroVisor External API for OpenStack Pike .. 63

6.3 Hypervisor Performance counters ... 82

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 7 of 87

List of Figures

Figure 1: Memory throughput ... 24
Figure 2: MicroVisor UI ð Dashboard showing platform resources .. 25
Figure 3: MicroVisor UI ð Rack view showing their resources .. 26
Figure 4: MicroVisor UI ð Resource group view showing grouped resources 27
Figure 5: MicroVisor UI ð Datastore view showing configured datastores and used storage
capacity ... 28
Figure 6: MicroVisor UI ð Instance view showing virtual machines configured and deployed 29
Figure 7: Resource group configuration ... 33
Figure 8: Storage optimization .. 34
Figure 9: CPU overcommit .. 34
Figure 10: Fault tolerance ... 35
Figure 11: Datastores selection .. 35
Figure 12: Nodes selection .. 35
Figure 13: Cores selection ... 36
Figure 14: Networks selection .. 36
Figure 15: RG configuration finalization .. 36
Figure 16: RG availability .. 37
Figure 17: Creating a datastore .. 41
Figure 18: Compute nodes selection ... 42
Figure 19: Physical disks selection .. 42
Figure 20: Datastores redundancy ... 43
Figure 21: Enable metadata .. 43
Figure 22: Finalizing Datastore .. 43
Figure 23: Created Datastores list .. 44
Figure 24: A high-level view of OpenStack core services. .. 50
Figure 25: OpenStack - MicroVisor Architecture .. 52
Figure 26: New architecture for OpenStack on the MicroVisor platform .. 53
Figure 27: List of Hypervisors .. 57
Figure 28: Create instance details ... 58
Figure 29: Create instance source .. 58
Figure 30: Create instance flavor ... 59
Figure 31: Create instance networks ... 59
Figure 32: Create instance key pair ... 60
Figure 33: New instance created .. 60
Figure 34: Create flavor form ... 61

file://VBOXSVR/Public/NTUA/EU_Projects/ACTiCLOUD/Deliverables/D2.3/ACTiCLOUD_D2.3_v1.0_Final-vk.docx%23_Toc19271236

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 8 of 87

List of Abbreviations

Abbreviation / Acronym Meaning

DoA Description of Action

WP Work Package

NFV Network Function Virtualization

VM Virtual Machine

OS Operating System

SPOF Single Point Of Failure

I/O Input / Output

Dom0 Domain 0 (Control Domain)

DomU User domain

VMM Virtual Machine Monitor

KVM Kernel-based Virtual Machine

HVM Hardware Virtual Machine (fully virtualized hardware)

CSP Cloud Service Provider

PV Para-Virtualization

LUN Logical UNit (virtual or physical disk volume)

DB DataBase

WP Work Package

WPL Work Package Leader

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 9 of 87

1 Introduction
ACTiCLOUDõs vision is to develop a novel cloud architecture that will break the existing scale-up
and share-nothing barriers and enable the holistic management of physical resources both at the
local cloud site and the distributed levels, targeting drastically improved utilization and
scalability of resources. This will ultimately translate to:

a) Significant cost and performance improvements for Cloud Service Providers (CSPs)

b) Higher performance stability and lower pricing for cloud applications

c) Enhanced flexibility and scalability of cloud resources for intensive database applications that
have until now faced tough challenges in covering their resource demands from existing cloud
offerings.

ACTiCLOUD aims to advance the business viability of cloud deployment scenarios through
increased resource utilization and flexibility. This goal will be achieved through enhancement of
the various technologies in the architecture components, i.e. the Hypervisor, the cloud manager,
system libraries, language runtimes and database systems with a novel and holistic set of
mechanisms and policies built on top of these new-generation computing system architectures
and therefore enabling distributed, hyper-converged, òshare-anythingó, resource scale-out cloud
platforms to broaden the applicability of cloud technology across more markets through richer
and more cost effective application deployments.

1.1 Purpose of this Document

This document shows the valuable contribution of the MicroVisor Hypervisor in ACTiCLOUD. It is
the report/documentation part of Deliverable D2.3, accompanying the updated software part of
the deliverable that contains software components (binaries and code) for the MicroVisor
Hypervisor platform and the components required for the integration with the ACTiManager.

The MicroVisor platform, as ACTiCLOUDõs rack-scale Hypervisor layer, is a significant component
of the platform, providing all necessary mechanisms for virtualizing, managing and monitoring
compute, network and storage resource across the rack, as well as the mechanisms to reconfigure
resources on demand, according to the ACTiManager distributed cloud resource manager policies
(discussed in Deliverable D2.1) to achieve increased resource efficiency across the ACTiCLOUD
platform.

1.2 Relevance to ACTiCLOUD objectives, business scenarios and use cases

MicroVisor is one of the most important components in the ACTiCLOUD architecture as it plays a
central role in the realization of ACTiCLOUDõs objectives towards next generation IaaS platforms
[ACTi_D1.1]. The MicroVisor platform, through the efficient Hypervisor and the OpenStack
integration, enhances state-of-the-art cloud management and provides efficient and effective
resource control approaches with mechanisms to:

ǒ drastically increase the resource efficiency of cloud infrastructures in terms of
throughput per resource (Strategic Objective S01.1 on resource efficiency),

ǒ provide applications with better performance by lowering virtualization overheads
and strict performance guarantees through better resource allocation and placement
(Strategic Objective S01.2 on performance stability).

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 10 of 87

Additionally, as part of the ACTiCLOUD architecture, the rack-scale MicroVisor supports all the
necessary mechanisms for the deployment and management of scale-up and scale-out resources
offered by the underlying hardware (Strategic Objective S02.1 on scalability in resource
provisioning). Furthermore, interacting with the ACTiManager and the applications running in
Virtual Machines (VMs), it allows placement and scheduling of VM resources on the hardware
and responds to dynamic resource requests of the ACTiManager to address changes in
application demand (Strategic Objective S02.2 on elasticity in resource provisioning).

Finally, the efficient rack-scale resource management support of the MicroVisor is an essential
component for the realization of ACTiCLOUDõs business scenarios [ACTi_D1.1, ACTi_D1.2], also
summarized below:

ǒ Business scenario 1: Effective consolidation for increased revenue and reduced TCO,
ǒ Business scenario 2: Workload prioritization,
ǒ Business scenario 3: Hosting larger workloads,
ǒ Business scenario 4: Collaboration with sibling cloud sites,
ǒ Business scenario 5: Enhanced dependability and availability.

1.3 Document Structure

This deliverable contains the following sections: Section 2 presents the MicroVisor platform,
including a general overview of virtualization, traditional Hypervisor architectures and the
motivation for building and using the MicroVisor within the ACTiCLOUD project. Section 2 also
discusses the enhancements the MicroVisor provides, including the reliability, availability and
resiliency features that are integrated in the design of the platform, the performance counters
used for measuring the performance of the MicroVisor, as well as the NUMA-awareness and
vNUMA support implemented. All these features are directly relevant to the ACTiCLOUD project
objectives and the integration with management components of the ACTiManager.

Section 3 analyses the resource control capabilities that are built in the MicroVisor platform,
including the concept of resource groups, as well as their performance, availability and reliability
features. Section 3 also describes the process of configuring datastores and resource groups with
these features. In section 4, the integration of the MicroVisor into OpenStack is described,
including the redesigned architecture, implemented through an external API, along with
OpenStack drivers that will be released as open-source. Section 4 also demonstrates the
integrated control that can be performed through the OpenStackõs Horizon UI. Finally, the
Appendixes present some more detailed technical documentation, including the performance
counters implemented for the MicroVisor and a more detailed reference of the external REST API
developed for the integration with OpenStack Pike drivers.

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 11 of 87

2 The Rack-scale MicroVisor architecture
The MicroVisor platform, as ACTiCLOUDõs rack-scale Hypervisor layer, is a significant component
of the platform, providing all necessary mechanisms for virtualizing, managing and monitoring
compute, network and storage resource across the rack. In this section we provide a short
introduction to virtualization and an overview of the MicroVisor platform and its concepts.

2.1 Virtualization and t raditional Hypervisor s

Virtualization of server hardware is a commonly used practice to provide scalable resource
management and it is essentially the enabling technology for cloud computing. There are many
benefits of virtualizing hardware resources, primarily to enable efficient resource sharing (CPU,
memory, NICs) across a multi-tenant platform hosting a variety of Operating Systems (OSes). A
Hypervisor (HV), or virtual machine monitor (VMM) is a piece of software that creates, manages
and runs Virtual Machines (VMs), or guest domains. The Hypervisor presents the guest operating
systems with a virtual operating platform and manages the execution of the guest operating
systems. In addition to commonly deployed commercial Hypervisors such as VMware, there are
two dominant open-source Hypervisor platforms: Kernel-based Virtual Machine (KVM)1 and the
Xen Hypervisor2.

The Xen Hypervisor provides a true Type I Hypervisor, in contrast to the KVM Hypervisor
platform. That is to say that the Hypervisor layer runs directly on the bare-metal hardware,
managing guest OS instances directly above it. There is not any host operating system required
and in this way the Type I architecture is considered to be a minimal, high performance shim. In
parallel to the virtualized guest systems running on the Type I Hypervisor, traditional Xen
systems utilize a Control domain, known as Dom0, which has privileged access to the Hypervisor
and is responsible for various tasks including; administering guest virtual machines, managing
resource allocation for guests, providing drivers for directly attached hardware, and offering
network communication support. Guest Virtual Machines (DomUs) do not typically have direct
access to real hardware, and thus all guest domain network and storage communication is
managed through para-virtual device drivers hosted in the Control domain (Dom0), which in turn
handles safe resource access through multiplexing the physical hardware.

For every guest VM para-virtualized (PV) device that is active, there is a corresponding driver in
the control domain that allocates resources and handles the communication ring over which
virtual IO requests are transmitted. The control domain is then responsible for mapping those IO
requests onto the physical hardware devices behind them. Based on the Xen Hypervisor
platform, a guest OS can access a paravirtual IO interface using the standard paravirtualized (PV)
driver such as Netfront for the Ethernet or Blkfront for the block storage device without any
actual underlying hardware knowledge. In contrast to PV, HVM guests are fully virtualized,
providing hardware support through their own unmodified drivers in the VM, while the
hypervisor provides full support for hardware devices, either native or through hardware
emulation.

1 Kernel Virtual Machine https://www.linux -kvm.org/
2 Xen Project https://www.xenproject.org/

https://www.linux-kvm.org/
https://www.xenproject.org/

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 12 of 87

2.2 Motivation for the MicroVisor Hypervisor

Considering Xen as a reference Type I hypervisor, we observe that its architecture for IO (storage
and network requests), is quite centralized, where sending all the IO requests from guest domains
through a central, core domain, Dom-0, itself becomes a bottleneck that affects performance.
Thus, the network and I/O performance in this architecture is limited, due to context switches to
the control domain (Dom0) that handles the network packet switching for all VMs. In addition,
network function virtualization is increasingly being handled on commodity hardware as
individual worker VMs to provide enhanced network packet filtering, middlebox functionality
and packet forwarding. A new model is required to enhance and advance this architecture by
making the packet forwarding and I/O layers as fast as possible, with slow path network
functions offloaded to separate processing engines (Software Defined Network and Network
Function Virtualisation model).

To address these limitations of a traditional Type I hypervisor architecture (e.g. Xen), OnApp has
developed a new optimized hypervisor platform named the òMicroVisoró. The MicroVisor
implementation within the framework of ACTiCLOUD removes the centralised Dom0 model of a
Type-1 hypervisor and instead passes the logic and control to a higher-level software tool that
can then communicate with the guests. The core idea behind this approach is to remove any
dependency on a local control domain (Dom0) for virtual machine setup, booting and resource
allocation, and instead move this generic functionality into the hypervisor layer itself.

To ensure that control logic is handled efficiently and quickly in the MicroVisor, raw Ethernet
frames are sent among guests, avoiding TCP/IP overhead, which has a profound effect when
sending and receiving low-size block requests across the network. One of the issues of moving to
a controller-less approach is that this means that the drivers, which were part of the control
domain (Dom0), now need to be moved to another part of the Hypervisor. In the MicroVisor this
is implemented by either:

1. Creating driver domains that are lightweight Mini-OS3 style domains that have access to
the drivers and the underlying hardware. Each piece of hardware will have at least one
driver domain associated with it, with which the guests communicate for accessing the
physical resources.

2. Integrating a device driver for the hardware in the hypervisor layer itself. This has en
even lower overhead for IO devices, however it is more complex and costly to implement,
so only a few select drivers have been implemented currently in the MicroVisor.

2.3 Enhancements of the MicroVisor architecture

This section describes the advancements of the MicroVisor approach, over other traditional
hypervisor architectures, such as Xen. The main difference of the MicroVisor from Xen and KVM
is that there is no control domain (Dom0 in Xen terminology, or host OS for KVM). The
centralised Dom0 model means that split driver requests have to pass through the control
domain for each request and it becomes a bottleneck when many requests are being served to
multiple guest domains (DomUs). In order to interface with hardware, which is one of the normal
roles of the control domain in this new architecture, new driver domains are needed. These
driver domains interface with the hardware and in the current implementation of the MicroVisor

3 https://wiki.xenproject.org/wiki/Mini -OS

https://wiki.xenproject.org/wiki/Mini-OS

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 13 of 87

are implemented through minimal Linux domains or via Mini-OS domains for adding the driver
support. To provide even higher performance, in a few special cases (e.g. some network
interfaces or NVMe drives), such drivers have been integrated in the hypervisor itself.

Due to the absence of a control domain (Dom0), the MicroVisor architecture handles
configuration and management significantly different from traditional hypervisors, such as Xen
or KVM, which can use Dom0 (or hostOS in KVM) for configuration and management services. To
allow efficient management, the MicroVisor architecture has moved a minimal essential set of
tools from Dom0 to the Hypervisor layer itself, adding support for control and configuration APIs
needed.

In addition to moving configuration and control from Dom0 to the Hypervisor, the MicroVisor
architecture features a remotely accessible (i.e. networked) control and management API, to
accommodate the fact that there is no control domain to run locally on each MicroVisor. The
result is an Ethernet-level command API that allows location-agnostic monitoring and control of
any Hypervisor from a controller anywhere on the local Ethernet network. The MicroVisor
Ethernet-level API can be used in a distributed mode for monitoring and managing resources on
multiple remote Hypervisors (compute, network, and storage resources) from a single controller,
running on a VM anywhere in the local cluster.

Another important characteristic of the MicroVisor architecture is that storage I/O requests
cannot be sent in the usual block-back queues through Dom0 to storage drives, since there is no
Dom0. Instead the MicroVisor architecture, being designed specifically for distributed operation,
converts the I/O requests into Ethernet frames and sends these directly via the ATA-over-
Ethernet protocol to either the local or remote storage server backends. Using Ethernet frames
ensures that the overhead of TCP/IP processing is removed and as such the I/O virtualization
overhead is significantly reduced. Overall, the use of Ethernet control frames for the
management, control, I/O and monitoring of the MicroVisor platform, along with the driver
domain and removal of Dom0 ensures that the virtualization overhead is much lower than the
standard hypervisor implementations. This results in higher performance and better control for
each of the resources and the guest domains.

Finally, an additional important aspect is that the MicroVisor platform is designed to be a
lightweight Hypervisor platform that is better suited for emerging hardware platforms compared
to traditional Hypervisors (e.g. Xen or KVM). Currently x86 (Intel/AMD) platforms have used
NUMA architectures for increasing the number of processor sockets and addressable memory on
a single board. Cores in NUMA hardware are linked with certain regions of memory but can
access the entire system memory at a higher incurred latency cost and at lower speeds. ARM
based, micro-server hardware platforms incorporate many cores that have lower performance
than the more widely used x86 (Intel/AMD) server platforms but are more energy efficient, and
systems like Kaleaoõs KMAX are entering the data center server market as a cost effective
alternative. The MicroVisor has been designed to work on both x86 (Intel/AMD) and ARM
hardware platforms, but MicroVisor's performance and power advantages are especially
pronounced in the aforementioned low-power ARM-based processors that have fewer resources.

2.4 The Rack-scale Hypervisor

The ACTiCLOUD architecture subcomponents of the Hypervisor platform are listed below,
including a brief description of each component and its functionality related to the specific
technology embraced i.e., the MicroVisor platform.

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 14 of 87

The MicroVisor hypervisor layer consists of the following subcomponents:

ǒ Hypervisor microkernel. The main Hypervisor microkernel is like Xen (Type I),
but with significant differences in the handling of networking, I/O, and resource
management. Additionally it has a new Ethernet-based management layer and several
more features, detailed in the rest of this list.
ǒ Resource scheduler. The resource scheduler is part of the Hypervisor kernel and

can be configured through the MicroVisor Ethernet-level API. Pinning of resources can be
carried out accordingly. The scheduler then decides how the resources are presented
through the driver domains to the guest Virtual Machines and so can be used for rate-
limiting and performance configuration.
ǒ Vir tual Switch. An integrated internal packet switch is embedded in the

Hypervisor kernel to handle packet forwarding. This switch manages shared network and
I/O resources from different MicroVisor nodes to provide aggregated network and
storage resources that are linked and accessed from the guest VMs on each Hypervisor.
ǒ Ethernet packet handler. The MicroVisor does not use TCP/IP for management or

resource control, using instead Ethernet packets. This avoids having the heavy TCP/IP
stack within each domain, but this does mean that a network reliability and flow control
protocol has to be implemented for moving control and monitoring data across
Hypervisors. This, however, is much lighter than TCP. VMs residing on the MicroVisor
can continue to use TCP/IP.
ǒ Driver domains and integrated drivers. For the MicroVisor, given that there is no

control domain (no Dom0), a driver when required is launched as its own Virtual Machine
(driver domain) that has access to the physical resource that can then be shared with the
guests. The current implementation of the driver domain uses MiniOS as the host OS,
which is a cut down minimalistic OS kernel used for stub domains. Additionally the
MicroVisor has integrated a small set of hardware drivers in the hypervisor layer itself, in
order to further optimize performance on specific network cards and NVMe storage
drives.
ǒ Monitoring system. A monitoring system is built into the MicroVisor, also through

Ethernet packets. Some values that would normally be exposed in GNU/Linux via the
ò/procó interface, for instance, are exposed through the Monitoring API and captured by
aggregators on the local network. Currently, several statistics about
CPU/network/memory/storage usage are captured and can be queried. Depending on the
requirements of the higher level components, these monitoring metrics can be extended.
ǒ Monitoring API. The monitoring values captured by aggregators on the controller

node are stored using the round robin database (RRD) format. Through a monitoring API
provided, one can access the current status of a particular MicroVisor. The API describes
the resource that is being queried and how frequently the monitoring should be carried
out.
ǒ Orchestration API. Control of the MicroVisor is carried out through the

MicroVisor API. Assigning workloads, managing VMs and the connected resources is
carried out through this API.

In addition to the Hypervisor layer, the MicroVisor platform includes several other components
that provide essential functions. These are described in the following sections.

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 15 of 87

2.4.1 Distributed Storage Platform

In the MicroVisor platform, besides the Hypervisor itself, OnApp has developed a distributed,
hyper-converged storage platform that is currently deployed in the OnApp Cloud platform as a
separate storage product. OnApp Storage allows for Hypervisors to use directly-attached storage
on the server machines as a distributed block-storage system. This has been used for many years
with Xen and KVM and is used in a large part of the ONAPP customer base. It is also considered as
a disruptive technology versus the conventional network attached storage (NAS) platforms that
are usually used in the data center. Most of the storage platform has been adapted from the
OnApp Storage solution for the MicroVisor platform, such that it can be used to share storage
resources on clusters of machines running the MicroVisor platform. More details on the storage
layer implementation with a focus on the reliability and availability features is provided in
Section 2.5.1 òStorage Fault-tolerance & Availabilityó.

2.4.2 Guest Operating System support

The Guest Operating System (OS) refers to the typical OS that is inside a virtual machine (VM).
The requirements for the Guest OS within the ACTiCLOUD project are to support unmodified OSes
for guest domains on established cloud infrastructures, which is exactly what the MicroVisor
platform supports. Thus, ACTiCLOUD-enabled systems will be able to operate with any type of
Guest OS, although our experimentation and any changes to the system libraries of the Guest OS
is performed on established Linux-based systems. Hence, within the scope of ACTiCLOUD, we
focus our effort on Linux-based systems, and particularly on the most popular Linux-based cloud
image distributions (e.g. Ubuntu 16.04, 18.04, CentOS 7, etc.) for the final project prototype.

To create and deploy a new VM with a guest OS (e.g. Ubuntu 18.04), the user needs to use the
standard OpenStack User Interface (UI), called Horizon UI, or the OpenStack command line
interface (CLI) that controls the MicroVisor platform. The basic steps of this process are the
following:

1. The image of the target OS that will be used for the instance (VM) is downloaded,
2. The user specifies through the OpenStack UI or CLI a flavor that will provide the

specifications for the instance (according to OpenStack terminology), as well as the
network and storage settings for the instance,

3. The instance (VM) is created and the Guest OS starts its execution.

More information about this process can be found in the accompanying software part of this
deliverable and in the OpenStack documentation (Pike version4).

2.5 Reliability and Availability

ACTiCLOUD aggregates resource pools and, as such, may increase the likelihood for failures on
part of the system that affect other applications. Graceful degradation of the shared resources is
important to avoid the case where failures have an effect on greater parts of the system.

Since CSPs usually have redundancy in hardware, the MicroVisor storage platform offers
increased availability and reliability by utilizing redundant resources through data replication.
This type of replication is based on redundancy across Hypervisor, so it can maintain availability
of a storage volume, not only when one of its storage devices fails, but also when a Hypervisor

4 https://docs.OpenStack.org/install-guide/launch-instance.html

https://docs.openstack.org/install-guide/launch-instance.html

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 16 of 87

that hosts one of the replicas for that virtual disk fails. Based on this level of storage availability,
the platform is also able to offer VM failover to another node, since the data volume is available,
even if a server fails.

2.5.1 Storage Fault-tolerance & Availability

The MicroVisor platform has an integrated distributed block storage service, where VMs running
on any of the Hypervisors can access any local or remote virtual volume through block I/O
requests that the MicroVisor converts to ATA-over-Ethernet requests to local or remote backend
I/O servers. The backend storage pool consists of specialized virtual machines (VMs), called
storage nodes that have privileged access to the physical storage devices (e.g. hard disk drives,
SSDs or NVMe drives) that reside on each server machine. Each storage node is responsible for
handling the block I/O requests of the drives it is directly managing.

A physical storage device can only be associated with one storage node. However, the platform
offers storage pools, called Datastores (configuration details analyzed in Section 3), which are
logical layer configurations that map the physical storage drives into distributed storage pools
with different properties (e.g. replicas for fault-tolerance, or overcommit).

The number of replicas determines how many replicas of a block of data should be created in a
pool, and the corresponding level of faults that a virtual storage volume on the datastore can
tolerate. This can currently be set to 1 (i.e. one data replica / no redundancy), or 2, meaning the
storage block is replicated to one other drive and another server node, so it is not affected by
single-node or drive failures.

The overcommit value sets the value of resources allocated beyond the physical capacity that is
physically available in the system. In shared storage platforms although 10GB may be allocated to
a customer, only 5GB may be actually used with the rest remaining under-utilised. Across many
VMs in a shared pool this wasted capacity might be considerable, thus the overcommit option
allows this to be set in order to increase actual utilization. Once the actual storage runs out, the
CSP will need to migrate some VM storage content to other drives or other storage pools. To
implement overcommit, storage nodes maintain a bitmap of the blocks that have been written
along with a tag that records the time of the block updates. Any transaction that is fully
committed should update this timestamp accordingly on all storage paths to maintain
consistency.

Storage replication and overcommit has been re-designed, implemented and failure-tested
during the second period of ACTiCLOUD. The final version developed has been integrated in the
final prototype of the ACTiCLOUD platform, providing a high level of storage reliability and
availability.

2.5.2 High-Availability Support for the MicroVisor management layer

Another aspect of the MicroVisor platform that is highly relevant to business scenario 5
(enhanced reliability), as discussed in Deliverable D2.1, is the high-availability (HA) support for
the MicroVisor controller. The controller is designed to maintain the system availability,
avoiding the existence of a Single Point Of Failure (SPOF). A SPOF is an individual software or
hardware component of the whole system, whose failure could cause downtime or data loss. The
system downtime occurs when a service or hardware component, such as a virtual or physical
network switch, is unavailable beyond a specified maximum amount of time. Potential data loss
could occur on accidental deletion or destruction of data, such as the hard disk failure.

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 17 of 87

The MicroVisor controller HA is achieved through the support of three main components: the
MicroVisor management controller, the monitoring of VMs and the distributed storage service.

1. The MicroVisor management controller, running essential management services, runs on
a virtual machine (VM) that can be hosted on any MicroVisor host in the cluster or rack,
booting from a virtual Logical Unit (LUN) that is replicated. The LUN is announced via a
broadcast protocol that is detected by all MicroVisor hosts attached to the same local
Ethernet network. A MicroVisor is designated (either via boot arguments or at runtime)
to host the controller node, and that particular MicroVisor then runs a periodic task to
ensure that the controller node is booting and running. If it is not running, it is started
immediately. The process of failing over the controller is therefore a straightforward
mechanism to instruct a new MicroVisor to boot and host the controller in the event that
the original host for the controller node has failed. Detecting liveness is achieved by
running a quorum of separate nodes across the cluster of MicroVisors and using a
consensus protocol to decide if the hosting node has disappeared, followed by a
leadership election process to determine the new host that will run the controller.

2. The ongoing monitoring of VM liveness is implemented in the controller node. In the
event that a controller determines a MicroVisor is no longer responding and all the VMs
are dead, it will inform that storage layer to remove the active LUN mapping of the dead
nodes and restart them elsewhere. The selection of which MicroVisor to fail-over each
VM is based on the resource group that the VM belongs to and the failure policy
configured and availability of resources.

3. The distributed storage layer, discussed above, is based on the mature OnApp Integrated
Storage technology. This component provides a complete management stack for storage
content and provides storage nodes (the individual hosts that control the direct attached
storage drives) to communicate amongst each other and determine liveness of each
otherõs replicas. Storage content that is replicated and strictly managed via an epoch
mechanism. Whenever a storage replica is lost from the set, the epoch is incremented to
ensure that the non-responding member is forcibly removed from the set. If it comes
back online, it will always determine across the set of owners that it is has a stale set of
data and will force itself into a slave status which means that it must be re-synchronised
to ensure it is consistent again before it can be added back to the set.

More details on the operation and implementation of these HA components, liveness tracking of
services and fault-tolerance of the controller node and its metadata can be found in Deliverable
D2.1.

2.6 Rack-scale Monitoring

The MicroVisor platform provides mechanisms for monitoring and performance characterization
that are essential for the ACTiManager components of the ACTiCLOUD architecture. These are
described in this section.

2.6.1 Monitoring Statistics

The MicroVisor platform currently includes monitoring mechanisms that gather statistics for the
following resources:

ǒ CPU usage
ǒ Network IO stats

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 18 of 87

ǒ Block storage IO stats
ǒ Memory utilization

The statistics are transmitted to an RRD aggregator service called statsd, running on a local node,
which receives stats via Ethernet packets and converts them to the RRD time-series form. To
ensure isolation and separate handling, the MicroVisor uses a different Ethernet type for the
network transmission. Then, those packets are passed to tools, such as rrdtool and rrdcached, to
be aggregated and/or stored. Any aggregator that supports the RRD form can process these
statistics.

The following type of metrics are currently provided by the monitoring API, captured by the RRD
aggregator server and can be queried between time periods:

1. For every MicroVisor (i.e. at MicroVisor level)
1.1. Timestamp
1.2. Number of Physical CPUs (pCPUs)
1.3. Number of CPU Pools
1.4. Number of NUMA Nodes
1.5. Number of Guests (VM domains)
1.6. Total Memory
1.7. Free Memory
1.8. Average Load

2. Per Physical CPU (local)
2.1. CPU ID
2.2. CPU Time
2.3. Timestamp

3. Per NUMA node (local)
3.1. Node ID
3.2. Total memory
3.3. Free memory

4. Per CPU Pool (local)
4.1. Cpu Pool ID
4.2. Average Load
4.3. Number of CPUs
4.4. Number of Guest domains

5. Per Guest Domain (i.e. local VM level)
5.1. VM domain UUID

6. Per vCPU (in domain)
6.1. Cpu ID
6.2. Timestamp
6.3. Utilization percentage

7. Memory (in domain)
7.1. Timestamp
7.2. Current memory used
7.3. Max memory available

8. Network VIFs (per Virtual Interface)
8.1. VIF ID
8.2. Timestamp
8.3. Recv bytes

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 19 of 87

8.4. Recv packets
8.5. Recv errors
8.6. Recv drops
8.7. Transmit bytes
8.8. Transmit packets
8.9. Transmit errors

8.10. Transmit drops
9. Storage (per Virtual Block Device)

9.1. VBD ID
9.2. Timestamp
9.3. Backing dev type
9.4. Device name
9.5. Outstanding IO requests (number)
9.6. Read requests
9.7. Write requests
9.8. Read sectors
9.9. Write sectors

The frequency of the generated messages can be configurable from a few seconds to minutes;
however, very frequent updates will generate a lot of network traffic on large clusters. A
frequency in the order of tens of seconds should be sufficient for most monitoring and
orchestration uses.

2.6.2 Performance counters on Virtualization

Besides monitoring statistics for the platform, the integration with the ACTiManager and
orchestration services requires more fine-grain and detailed statistics about the CPU behavior in
VMs and applications running in VMs. For that purpose the MicroVisor implements performance
counters at the hypervisor layer that provide a multitude of low-level, high-frequency metrics
that can be used to characterize the behavior and performance bottlenecks of VMs and
applications.

The performance counter layer and tools access the Performance Monitoring Unit (PMU) in the
CPU cores, allowing a close look at the behavior of the hardware and its associated events, similar
to the òperfó Linux tool. The MicroVisor allows monitoring a list of events to measure micro-
architectural events in hardware, such as the number of cycles, instructions retired, LLC cache
misses and so on. Those events are called PMU hardware events or hardware events for short,
and they vary with each processor type and model5. Currently the MicroVisor provides support
for these events on some common Intel x86 CPUs (e.g. Xeon / Skylake CPUs), while support for
more hardware models will be gradually added.

Additionally the hypervisor itself is providing detailed metric for its own hypervisor software
events, such as exceptions, vmexits, apic timer interrupts, interrupts, hypercalls, context
switches, domain page TLB flushes, mmuext ops, calls to mmu_update, page updates, and many
more. Appendix I, Section 6.3 includes a detailed list of the current hypervisor performance

5 Intel® 64 and IA-32 Architectures Software Developerõs Manual: Volume 3, Chapter 19, Table 19.1
https://www.intel.com/content/www/us/en/architecture -and-technology/64-ia-32-architectures-
software-developer-system-programming-manual-325384.html

https://www.tecmint.com/command-line-tools-to-monitor-linux-performance/
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 20 of 87

counters used in order to measure the performance of each hypervisor node and VM domains
running on it.

The current implementation includes a cmd-line tool named òmvctl-perfcó that can read the
performance counters provided by the MicroVisor over the Ethernet and report them as output,
as well as reset the counters if needed.

The mvctl-perfc tool currently has the following options:

ǒ --perfc-dump (dumps all perfcounters)
ǒ --perfc-get <perfcnter name> (dumps specific perfcounter)
ǒ --perf-reset (resets perfcounters)

2.7 Performance

2.7.1 vNUMA Support

On Non-Uniform Memory Access (NUMA) architectures, memory accessing times of an
application running on a CPU core depends on the relative distance between that specific CPU
core and the specific memory. Modern server CPUs (e.g. Intel Xeons) are NUMA-based systems,
where each CPU core has its own òlocaló memory, which they can access very fast, with low
latency and high throughput. On the other hand, loading or storing data from and to remote
memories (i.e. memories local to some other CPU cores in the system) is quite more complex and
slow. NUMA machines are becoming more and more common, as the number of CPU cores
increases.

NUMA awareness, that is the knowledge of the distance from each CPU to each memory node, has
a significant performance impact on large machines, as soon as many VMs start running
memory-intensive workloads on a shared host. In fact, the cost of accessing remote (non node-
local) memory locations is high, and the performance degradation is likely to be noticeable.
Published performance results on the Xen hypervisor for a memory-intensive benchmark with
several competing VMs running concurrently on a hypervisor with 2 NUMA nodes, indicate up to
25% better performance when using all local memory vs. remote memories6.

vNUMA (virtual NUMA) support allows NUMA-awareness for a virtual machine for many virtual
CPU cores (vCPUs), allowing the OS scheduler and applications in the VM to make NUMA-aware
decisions on memory allocation and CPU core affinity. A vNUMA topology is currently defined as
a set of parameters such as:

ǒ number of vNUMA nodes
ǒ distance table
ǒ vnodes memory sizes
ǒ vcpus to vnodes mapping
ǒ vnode to pnode map (for NUMA machines).

In the MicroVisor implementation, the vNUMA topology is exposed to HVM guests to improve
performance when running workloads on NUMA machines. vNUMA-enabled guests may be
running on non-NUMA machines and thus having virtual NUMA topology visible to guests. In the

6 Xen on NUMA Machines https://wiki.xen.org /wiki/Xen_on_NUMA_Machines

https://wiki.xen.org/wiki/Xen_on_NUMA_Machines

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 21 of 87

current MicroVisor implementation of vNUMA, the default behavior when creating an HVM
instance is to split the memory among all available NUMA nodes in the system.

Currently, the MicroVisor implementation of vNUMA is being optimized and tested for
regressions, in order to be merged into the main MicroVisor code. The MicroVisor without
vNUMA support shows the following console output for the òshow numaó command for one VM
domain:

(NEX) [2019 - 07- 16 09:06:58] Domain 6 (total: 8380935):

(NEX) [2019 - 07- 16 09:06:58] Node 0: 8380667

(NEX) [2019 - 07- 16 09:06:58] Node 1: 268

With NUMA support and the current vNUMA implementation, the MicroVisor console command
output for memory allocated for a VM domain is the following:

(NEX) [2019 - 07- 16 09:10:11] Domain 5 (total: 8384496):

(NEX) [2019 - 07- 16 09:10:11] Node 0: 4192248

(NEX) [2019 - 07- 16 09:10:11] Node 1: 4192248

(NEX) [2019 - 07- 16 09:10:11] 2 vnodes, 32 vcpus, guest physical layout:

(NEX) [2019 - 07- 16 09:10:11] 0: pnode 0, vcpus 0- 15

(NEX) [2019 - 07- 16 09:10:11] 0000000000000000 - 00000003ffffffff

(NEX) [2019 - 07- 16 09:10:11] 1: pnode 1, vcpus 16 - 31

(NEX) [2019 - 07- 16 09:10:11] 0000000400000000 - 000000080fffffff

2.7.1.1 Guest vNUMA support

On the current MicroVisor implementation of vNUMA, the NUMA information output on a
vNUMA-enabled guest VM is presented below:

root@instance - 4:/home/ubuntu# numactl ïH

available: 2 nodes (0 - 1)

node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

node 0 size: 15771 MB

node 0 free: 15353 MB

node 1 cpus: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

node 1 size: 16360 MB

node 1 free: 15912 MB

node distances:

node 0 1

 0: 10 20

 1: 20 10

root@instance - 4:/home/ubuntu# numactl - s

policy: default

preferred node: current

physcpubind: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

26 27 28 29 30 31

cpubind: 0 1

nodebind: 0 1

membind: 0 1

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 22 of 87

In contrast, a vNUMA-disabled guest VM on the MicroVisor shows no NUMA awareness, and all
CPU cores appear to be on the same node:

root@instance - 5:/home/ubuntu# numactl - H

available: 1 nodes (0)

node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

26 27 28 29 30 31

node 0 size: 32132 MB

node 0 free: 31463 MB

node distances:

node 0

 0: 10

root@instance - 5:/home/ubuntu# numactl - s

policy: default

preferred node: current

physcpubind: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

26 27 28 29 30 31

cpubind: 0

nodebind: 0

membind: 0

2.7.1.2 vNUMA Performance Impact

To demonstrate the impact of vNUMA and NUMA awareness in VMs on the MicroVisor, the
Stream memory bandwidth benchmark7 has been used to measure memory performance. For the
purposes of the benchmark we created two HVM instances, each with 16 CPU cores, 32GB of
memory and 100GB disk. One VM had vNUMA support enabled and the other vNUMA disabled.

The results shown below demonstrate clearly the performance advantages of NUMA-awareness
with vNUMA. We observe that NUMA-enabled VMs with CPU pinning perform up to 228% better
than non-NUMA-enabled VMs, also with CPU pinning enabled.

1. NUMA-enabled guest VM (no CPU pinning):

7 STREAM: Sustainable Memory Bandwidth in High Performance Computers
https://www.cs.virginia.edu/stream/

https://www.cs.virginia.edu/stream/

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 23 of 87

$./stream - old

[snipped]

Function Rate (MB/s) Avg time Min time Max time

Copy: 63710.9499 0.0017 0.0016 0.0065

Scale: 60024.5188 0.0018 0.0017 0.0066

Add: 66281.3917 0.0025 0.0023 0.0077

Triad: 66170.5880 0.0025 0.0023 0.0498

Solution Validates

2. NUMA-enabled guest VM (split cores, with manual CPU pinning):

$./stream - old

[snipped]

Function Rate (MB/s) Avg time Min time Max time

Copy: 82174.4774 0.0013 0.0012 0.0058

Scale: 74124.3794 0.0015 0.0014 0.00 64

Add: 84262.7325 0.0019 0.0018 0.0057

Triad: 80492.9712 0.0020 0.0019 0.0192

Solution Validates

-- -------------

3. NUMA-disabled guest (CPU pinning enabled by default in the resource group):

$./stream - old

[snipped]

Function Rate (MB/s) Avg time Min time Max time

Copy: 34795.8188 0.0030 0.0029 0.0054

Scale: 33712.2696 0.0031 0.0030 0.0051

Add: 36936.8189 0.0041 0.0041 0.0044

Triad: 37256.2326 0.0041 0.0041 0.0060

---------------- ---

Solution Validates

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 24 of 87

The following graph illustrates the memory throughput difference with and without vNUMA
support.

Figure 1: Memory throughput

2.8 Web-based User interface

 In ACTiCLOUD a MicroVisor web-based User Interface (UI) component has been developed for
configuring and controlling the platform and its resources on top of the control stack and
services. The web UI has been designed and implemented by OnApp as a dynamic web front-end
using the React javascript framework, running on the userõs web browser, while the backend is
provided by the MicroVisor management REST API implemented in a Go server, which interfaces
with the control stack services to manage the MicroVisor platform resources.

Several components of the UI have been redesigned and improved in the Final MicroVisor
prototype, managing racks, Hypervisors, networks, storage and instances (VMs). The Figures
below display general views of the MicroVisor dashboard:

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 25 of 87

Figure 2: MicroVisor UI ð Dashboard showing platform resources

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 26 of 87

Figure 3: MicroVisor UI ð Rack view showing their resources

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 27 of 87

Figure 4: MicroVisor UI ð Resource group view showing grouped resources

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 28 of 87

Figure 5: MicroVisor UI ð Datastore view showing configured datas tores and used storage

capacity

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 29 of 87

Figure 6: MicroVisor UI ð Instance view showing virtual m achines configured and deployed

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 30 of 87

3 Resource control in the MicroVisor platform
As mentioned in Section 2, in the MicroVisor platform a resource group is a combination of CPU
cores, memory units and storage units that operates as a separate resource pool with common
characteristics, such as storage performance, locality, CPU locality and pinning, overcommit, etc.
These processing, networking and storage resources can be located anywhere in the cluster
infrastructure (e.g. in one or more racks).

The notion of resource groups is essential to the MicroVisor and all virtual machines (VMs or
server instances) must belong to a resource group, which is required upon VM creation time. The
resource group for the VM identifies the set of physical CPU cores that the VM can be executed
on (or pinned on if CPU pinning policy is selected), as well as the associated storage datastores
and networks that the VM can use (e.g. a pool of fast NVMe flash storage, or a slower hard disk
pool).

3.1 Relevance to ACTiCLOUD Objectives

The resource groups are used to pool resources of VMs into separate isolated groups, in order to
place VMs in different resource pools. The concept of resource groups can be used to provide:

ǒ Tiered levels of service for VMs, such as a high-performance tier, using for example quick
storage or network with pinned CPUs, or a slower tier, using shared overcommitted CPUs
without pinning and slower storage.

ǒ Guaranteed VM performance (e.g. VMs pinned on specific CPUs)
ǒ Performance isolation for different VMs that can be noisy and affect others.
ǒ Multiple reliability and availability levels of service for VMs.

This is directly related to the ACTiCLOUD Strategic Objective 1 (SO1): Effective utilization of cloud
resources. This strategic objective is sought by unchaining resource management and
provisioning from the physical bounds of a single server and a single cloud site, together with the
implementation of novel resource-aware allocation policies. SO1 is further split into the
following two explicit sub-objectives that are concurrently pursued:

SO1.1: Resource efficiency: Focusing on the requirements of Cloud Service Providers (CSPs) for
reduced Total Cost of Ownership (TCO), ACTiCLOUD aims to drastically increase the resource
efficiency of cloud infrastructures in terms of throughput per resource unit.

SO1.2: Performance stability: Focusing on the requirements of end-users, ACTiCLOUD aims to
deliver performance stability to applications in terms of minimized performance variation
compared to standalone execution.

3.2 Performance features of Resource Groups

Several performance-related features in the MicroVisor platform are supported through resource
group attributes, which are applied on all VMs configured in each resource group. These features
are explained in more detail in this section.

3.2.1 NUMA CPU assignment

When creating or editing a resource group, a system administrator controls which physical CPU
cores are assigned to the group and therefore on which physical cores a VM in the group can
execute on. The platform (i.e. the API, CLI and UI) provide NUMA hardware information to the

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 31 of 87

user configuring the resource groups. Also the web UI groups the CPU cores according to their
physical NUMA nodes, so resource groups can be created using any combination of CPU cores
within NUMA nodes or across multiple of them. This allows control of the NUMA physical CPU
cores where VMs will be using, according to the user preferences for performance (i.e. exploiting
the NUMA topology).

3.2.2 CPU overcommit

CPU overcommit on the MicroVisor allows more than one VMs to execute on the same physical
CPU cores, which is useful in many multi -tenant workloads in VMs that do not require dedicated
CPUs for performance. On the other hand, no CPU overcommit implies a 1-to-1 mapping of
virtual CPU cores to physical cores and can provide increased CPU performance on dedicated
physical CPUs. This resource group policy can be configured during resource group creation and
applies to all VMs that belong to that group, allowing shared or dedicated CPU resources
depending on VM needs.

3.2.3 CPU Pinning (Core Assignment)

CPU core assignment, or as it is widely known, CPU pinning, is performed through the Hypervisor
and controlled via the management layer and the UI via resource groups. It essentially enables
the binding and unbinding of a VM process to a CPU or a range of CPUs, so that the VM processes
or threads will execute only on the designated CPU(s) rather than any random CPU the scheduler
decides. CPU pinning takes advantage of the fact that remnants of a VM process that was run on a
given processor may remain in that processor's state (for example, data in the cache memory)
after another process was run on that processor. Scheduling that VM process to execute on the
same processor improves its performance by reducing performance-degrading events such as
cache misses.

CPU pinning is a property of a resource group, which means that every VM on a resource group
created with the pinning enabled, will have CPU pinning on specific CPUs. When creating or
editing a resource group, a system administrator controls which cores are assigned to the group
and therefore on which physical cores a VM in the group can execute on.

3.2.4 Storage Optimisation

During resource group deployment the user can select the òOptimized Storageó option, which
enables a policy to allocate one storage replica on the same physical server where a VM is
running. This means that when we create a VM on a òStorage Optimizedó resource group, one
replica of all its virtual disks will be mapped to physical storage residing on the same server host.

Optimized local storage minimizes latency (and usually increases throughput) for all I/O read
requests, which are sent only to the local replica, avoiding network transfers. Local storage
performs particularly well with fast NVMe flash drives, which have lower latencies and higher
throughput than common network interfaces and protocols (i.e. 10GBps NICs). Replication for
I/O write requests, however, performs at network-bound speeds, since the data are replicated on
storage drives located on a separate server, over the network.

3.3 Reliability and availability fea tures of Resource Groups

Regarding reliability and availability in resource groups, the following capabilities are supported:

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 32 of 87

3.3.1 Fault-tolerance

The 'Fault Tolerance' option in a resource group allows specification of the Unit of fault tolerance
required for VMs and storage (None/Blade/Chassis/Rack) and the maximum number of Units
allowed to be lost while remaining in a fault-tolerant state. With this feature the configuration of
a VM maintains redundancy across a blade, chassis or rack to satisfy fault-tolerance
requirements for the resource group.

3.3.2 Failover

If the òAutomatic failoveró option of a resource group is enabled, a VM failure in that resource
group would trigger automatic failover of the VM in another node that is configured in the same
resource group (depends also on the fault-tolerance level selected). To support such a failover
feature, the system requires a level of redundancy of resources, which is enforced by the
resource group and VM configuration policies.

3.4 Configuration of Resource groups via the UI

Resource groups with CPU pinning and overcommit, as well as binding to specific storage and
network resources are a core concept of the MicroVisor platform and it is essential for all
resource configuration to use them for the system operation.

To demonstrate the concept and provide a clear view of the usage and implementation of
MicroVisor resource groups, we present in this section their configuration through the
MicroVisor web UI. The process has been simplified through a òwizardó which gathers all
necessary information for the creation of a resource group, which maps to all layers of the
system through the controller stack and API. We believe this demonstrates the concept and the
control features that are essential to ACTiCLOUD objectives for efficient resource management.

In the MicroVisor platform all virtual machines (also noted as VMs or server instances) must
belong to a resource group. The resource group is identified by a set of physical CPU cores on one
or more server hosts that are members of the group and is associated with a number of storage
datastores and networks.

In order to create a resource group through the MicroVisor UI, the administrator must:

1. Select the Resource Group tab.
2. Click the Create Resource Group button.
3. Fill in the configuration form through the following steps.

Initial Setup - No Resource Group available:

In case of an install in a brand-new system (i.e. that has not been previously configured), the
Resource Groups menu option in the UI should look like the following:

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 33 of 87

Figure 7: Resource group configuration

In order to properly create a Resource Group, the steps described below must be followed:

Step 1 - Select Storage Optimisation / Enable Fault Tolerance

The Storage Optimisation option is enabled by default.

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 34 of 87

Figure 8: Storage optimization

In the context of cores assignment, 'CPU overcommit' attribute is supported and can be applied
across all the selected cores. This feature provides the capability to allocate more than 1 virtual
cores to a single physical core. Specifically, users can choose between the range of 2 to 8 virtual
cores to be assigned to one single core.

Figure 9: CPU overcommit

By enabling 'CPU Pinning' attribute, each virtual core corresponds to only one physical core, and
as a result 'CPU overcommit' is disabled.

The 'Enable Fault Tolerance' option allows specification of the Unit of fault tolerance required
(Blade/Chassis/Rack) and the maximum number of Units allowed to be lost while remaining in a
fault tolerant state.

The option to Automatically Failover in the case of a failed Unit is also available.

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 35 of 87

Figure 10: Fault tolerance

Step 2 - Select available datastores that will hold VM data

Select one or more data stores that are accessible to the resource group according to step 1
selections

Figure 11: Datastores selection

Step 3 - Select the compute node resources (MicroVisors)

Select the members (compute nodes) that you want to make part of the resource group.

Figure 12: Nodes selection

Step 4 - Select the cores that will be assigned to the group

Select the cores on each member to assign to the resource group.

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 36 of 87

Figure 13: Cores selection

Step 5 - Assign the networks to which the instances may have access

Select one or more networks that are accessible to the resource group.

Figure 14: Networks selection

Step 6 - Finalize the configuration

Enter a name and relevant description. Click the Finish button to complete the resource
group creation.

Figure 15: RG configuration finalization

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 37 of 87

List of Resource Groups

In case the system has been previously configured, the Resource Groups menu option would
display them in a list, as shown in the following example:

Figure 16: RG availability

3.4.1 Command-line support for resource groups

There are several commands through the CLI to manage resource groups, such as create, delete,
edit resource groups, as well as add and remove network or datastores to them. For reasons of
brevity we only present the CLI commands to create a resource group with their options. All the
available commands can be found in our CLI documentation.

COMMAND:

 create_group

NAME:

 - Create a new resource group.

USAGE:

 [command options] [arguments...]

DESCRIPTION:

 Create a new resource group.

 Example:

 osd create_group -- name=super -- core_ids=54424488_4,54424488_5 -- network_ids=66,2 --

datastores=fjxi3vnzg4hm9y

OPTIONS:

 -- json Return the output as json.

 -- name value The display name of the object.

 -- description value The description of the object.

 -- core_ids value The list of physical cores, based on their IDs

 -- network_ids value The list of networks, based on their IDs

 -- datastores valu e The list of datastores, based on their IDs

-- cpu_overcommit value The maximum number of extra vCPUs per pCPU for each

VM.For example cpu_overcommit=2 will let each

physical core run 2 virtual cores. (default: 0)

-- disabl e_storage_latency_optimization This attribute will be used when creating an

instance to prioritize the MicroVisor that has

at least one local physical disk from the selected

datastore.

-- enable_cpu_pinning This attribute will enable the CPU pinning for all

the instances created for this group.

 -- filter value Filter the values you want to see from the output.

 -- enable_ft Enable the fault tolerance.

-- ft_u nit value Choose one of the fault tolerance units: 'mvgroup',

'blade', 'chassis' and 'rack'

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 38 of 87

 -- ft_max_failures value The number of MicroVisors that are acceptable to

fail. (default: 0)

-- disable_ft_auto_failover Disable the fault tolerance's automation failover

3.4.2 API support for Resource groups (resourceGroupsPost)

There are several calls for managing resource groups in the MicroVisor API, as all the operations
of the UI are handled via the REST API (e.g. create/delete/edit resource group). For reasons of
brevity we only present the resourceGroupsPost API endpoint (/resource_groups), which creates
a new resource group. More details and all the available REST API endpoints and their options
can be found in our API documentation.

/resource_groups

On the following scenarios, the endpoint will fail with 422 validation error:

ǒ The name cannot be empty. (422)
ǒ No core ids are assigned. (422)
ǒ No datastore ids are assigned. (422)
ǒ No network ids are assigned. (422)
ǒ Unknown core, datastore or network ids are given. (422)
ǒ The cpu_overcommit value is less than 1. (422)
ǒ The cpu_overcommit value is greater than 8. (422)
ǒ The CPU pinning is enabled and the cpu_overcommit is over 1. (422)

3.4.2.1 Usage and SDK Samples

Curl:

curl -X POST "http://localhost/api/resource_groups"

3.4.2.2 Parameters

ǒ Body parameters

Name Description

resourceGroup {

Required: cores,cpu_overcommit,datastores,name,network_ids

name: string

description: string

datastores: [

The datastore ids that will be assigned to the resource group.

String]

network_ids: [

The network ids that will be assigned to the resource group.

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 39 of 87

integer (int64)]

cores: [

The core ids that will be assigned to the resource group.

String]

cpu_overcommit: integer (int32) minimum:1

The number of extra virtual cores that can be created over a physical core. For example,
a cpu_overcommit value of 2 means that 2 virtual cores can be created for a single
physical core.

is_storage_latency_optimized: boolean

This attribute will be used when creating an instance to prioritize the MicroVisor that
has at least one local physical disk from the selected datastore.

is_cpu_pinning_enabled: boolean

This attribute will enable the CPU pinning for each instance created in the resource
group. CPU pinning means that the system will pin each virtual core of the instance to a
physical core. The default is false.

fault_tolerance: {

is_enabled: boolean

unit: string

max_failures: integer

automated_failover: boolean

is_degraded: Boolean }

}

3.4.2.3 Responses

3.4.2.3.1 Status: 202 - Resource group successfully created.

 {

A resource group is a combination of CPU cores, memory units and storage units. These resources can be located
anywhere in the infrastructure.

Required: id

id: integer (int32)

name: string

description: string

datastores: [

The ids of the datastores that are assigned to the resource group.

String]

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 40 of 87

disk_ids: [

This is an array containing all the disk ids that belong to all the datastores that are assigned to this resource group.

String]

network_ids: [

This is an array containing all the network ids that are assigned to this resource group.

integer (int64)]

cores: [

The ids of those cores that are assigned to the resource group.

String]

virtual_cores: integer (int32)

The total number of virtual cores created by instances. These virtual cores are using the physical cores that are
assigned to the resource group by definition.

real_cores: integer (int32)

The total number of physical cores.

core_usage: number (float)

The percentage of the physical cores of the resource group that are currently used by the virtual cores of the instances.

cpu_overcommit: integer (int32) minimum:1

The number of the extra virtual cores that can be created over a physical core. For example cpu_overcommit 2 means
that the scheduler allocates up to 2 virtual cores per physical core.

avail_memory: integer (int32)

The available memory from the processing units in the resource group. The value is in MB.

total_memory: integer (int32)

The total memory from the processing units in the resource group. The value is in MB.

total_storage: integer (int32)

The total space of the datastores in the resource group. The value is in MB.

avail_storage: integer (int32)

The available space of the datastores in the resource group. The value is in MB.

is_reserved: boolean

Denotes if the resource group is reserved which means that it is used by OpenStack and/or other services.

is_storage_latency_optimized: boolean

This attribute will be used when creating an instance to prioritize the MicroVisor that has at least one local physical
disk from the selected datastore.

}

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 41 of 87

3.5 Storage & Configuration of Datastore

As it has already been mentioned in Section 2, a Datastore is a collection of physical drives with a
redundancy and overcommit policy applied. All the data that is stored on the system is thin
provisioned so the available physical storage can be òovercommittedó up to any amount. It has to
be noted that any overcommitment of storage comes with an associated risk that the system may
run out of physical storage if excessive data is stored on the disks. In order to present local
storage drives to the server workloads as a unified storage layer, the available drives must be
selected and a distributed òDatastoreó should be created across them.

In order to configure Datastores, the steps described below must be followed:

1. Click the Datastores tab.
2. Click the Create Datastore button.

Fill in the storage configuration form step by step:

In case no Datastore has been previously configured - the "Datastores" menu option should look
like the following screenshot:

Figure 17: Creating a datastore

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 42 of 87

Step 1 - Select the Compute Resources:

Select the compute nodes with the physical storage to be added to the Datastore. This will
populate the available storage drives that are present across all the selected compute nodes.

Figure 18: Compute nodes selection

Step 2 - Select the drives:

Select the drives to be added into the Datastore (multiple drives required if fault-tolerance

with multiple replicas are needed).

Figure 19: Physical disks selection

Step 3 - Select the Redundancy:

Select the redundancy level to be applied (1 or 2 replicas).

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 43 of 87

Figure 20: Datastores redundancy

Step 4 - Enable DB metadata - (system DB backup):

Enable metadata, in order for the platform to automatically back up all system databases and

restore data from a specific backup (this is for the high-availability of the controller metadata,

which can be replicated on multiple storage devices).

Figure 21: Enable metadata

Step 5 - Finalizing the Datastore implementation:

Assign a Name and a Description to the new Datastore that has been created. This information
will be displayed in the Datastore list and will be used to identify the storage group when
assigning to a resource group. Selecting "Finish" will create the Datastore.

Figure 22: Finalizing Datastore

ACTiCLOUD ð H2020-ICT-2016-1 Project No: 732366 D2.3: Rack-scale MicroVisor v2.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 44 of 87

If the system has been configured properly, the Datastores menu option should look like the
following example:

Figure 23: Created Datastores list

3.5.1 Command-line support for datastores

There are several commands through the CLI to manage datastores, such as create, delete, edit
datastores, as well as add and remove disks to datastores. For reasons of brevity we only present
the CLI commands to create a datastore and list datastores with their options. All of the available
commands can be found in our CLI documentation.

COMMAND:

 create_datastore

NAME:

 - Create a new datastore.

USAGE:

 [command options] [arguments...]

DESCRIPTION:

 Create a new datastore.

 Example:

 osd create_datastore -- name=test -- disks=3584916917,3283879690 -- replicas =1 -- thick=1

OPTIONS:

 -- json Return the output as json.

 -- name value The display name of the object.

 -- disks value The list of storage disk's IDs.

 -- overcommit value The overcommit value of the space that the volumes can take.

 -- replicas value The number of replicas we want for the volumes. (default: 0)

 -- thick value The attribute to make the datastore thick. (default: 0)

 -- db_metadata Enable a vdisk for backing up the DBs.

 -- filter value Filter the values you want to see from the output.

 -- trigger_repair value How to trigger the repairs when the volumes are degraded,

'periodic' or 'manual'.

 -- periodic_repair_sec value When the trigger_repair is periodic, then we can write in

seconds the periods it will check the volumes. (default: 0)

 -- num_of_repairs value The number of repairs it can do in a parallel. (default: 0)

COMMAND:

